Nonisomorphic curves that become isomorphic over extensions of coprime degrees

Daniel Goldstein¹ Robert M. Guralnick² Everett W. Howe¹ Michael E. Zieve³

¹Center for Communications Research, La Jolla

²University of Southern California

³Center for Communications Research, Princeton

Special Session on Low Genus Curves and Applications Joint Mathematics Meetings, San Diego, January 2008

An innocent question.

Suppose

- K is a field,
- L is an extension of K,
- C is a curve over K.

Definition

An *L*-twist of *C* is a curve *D* over *K*, isomorphic to *C* over *L*.

Question

Let C and D be curves over \mathbb{F}_q .

Suppose *D* is both an \mathbb{F}_{q^2} -twist and a \mathbb{F}_{q^3} -twist of *C*.

Must *D* be isomorphic to *C* (over \mathbb{F}_q)?

Followup questions.

Suppose D is both an \mathbb{F}_{q^2} -twist and a \mathbb{F}_{q^3} -twist of C. Must D be isomorphic to C?

If answer is yes:

- Anything special about quadratic and cubic extensions?
- What about infinite base fields?

If answer is no:

- Same questions as above, plus. . .
- Does the answer depend on q?
- Anything special about C and D?

Minimal isomorphism extensions.

Definition

- Let C and D be curves over a field K.
- Let L be a finite extension of K.
- L is a minimal isomorphism extension for C and D if
 - C and D become isomorphic to one another over L,
 - but not over any proper subextension of L/K.

So our original question is:

Question

Do there exist curves C and D over \mathbb{F}_q for which both \mathbb{F}_{q^2} and \mathbb{F}_{q^3} are minimal isomorphism extensions?

Answering a different question.

Theorem

Given

- an arbitrary prime field K₀ and
- integers r > 1 and s > 1 with gcd(r, s) = 1,

there exist

- a finite extension K of K₀ and
- two curves C and D over K

such that C and D have minimal isomorphism extensions of degrees r and s over K.

How to approach these questions.

- Relate the questions to Galois cohomology.
- Turn the cohomology questions into group theory.
- For existence results, make simplifying assumptions!

Galois cohomology – an especially easy case.

Notation and assumptions

- K is a field, \overline{K} its separable closure, $G_K = \text{Gal}(\overline{K}/K)$.
- A is a torsion group on which G_K acts continuously.
- Suppose $G_K \cong \widehat{\mathbb{Z}}$, with topological generator φ .
 - Examples: $K = \mathbb{F}_q$ or $K = \mathbb{C}((t))$.

Definitions

- A cocycle is an element of A.
- Cocycles x_1 and x_2 are cohomologous if $x_2 = y^{-1}x_1y^{\varphi}$ for some $y \in A$.
- $H^1(G_K, A)$ = cohomology classes of cocycles.
- This is a set, with a distinguished element: [Id_A].
- Not a group, unless A is abelian.

Twists and cohomology, with same assumptions on K.

Suppose X is a curve over K, viewed as scheme over Spec K. If L is an extension of K, set $X_L = X \times_{\text{Spec } K} \text{Spec } L$.

Fundamental facts

- Have bijection: $\{\overline{K}\text{-twists of }X\}/\cong \longleftrightarrow H^1(G_K, \operatorname{Aut}X_{\overline{K}})$
- Restriction map: $H^1(G_K, \operatorname{Aut} X_{\overline{K}}) \longrightarrow H^1(G_L, \operatorname{Aut} X_{\overline{K}})$
 - Suppose L/K separable, degree n.
 - Class of cocycle x goes to class of $xx^{\varphi} \cdots x^{\varphi^{n-1}}$.
- We have $\left\{\overline{K}\text{-twists of }X\right\}/\cong \longleftrightarrow H^1(G_K,\operatorname{Aut}X_{\overline{K}})$ $\left\{\overline{K}\text{-twists of }X_L\right\}/\cong \longleftrightarrow H^1(G_L,\operatorname{Aut}X_{\overline{K}})$

The innocent question (cohomological version).

Question

Let $K = \mathbb{F}_q$, and let C be a curve over K.

Suppose an element of $H^1(G_K,\operatorname{Aut} C_{\overline{K}})$ becomes trivial in $H^1(G_{\mathbb{F}_{o^2}},\operatorname{Aut} C_{\overline{K}})$ and in $H^1(G_{\mathbb{F}_{o^3}},\operatorname{Aut} C_{\overline{K}})$.

Must it be trivial in $H^1(G_K, \text{Aut } C_{\overline{K}})$?

For theorem: Put *C* and *D* on equal footing.

Let r > 1 and s > 1 be two integers with gcd(r, s) = 1.

Goal:

Find a curve X over \mathbb{F}_q and $x, y \in H^1(G_{\mathbb{F}_q}, \operatorname{Aut} X_{\overline{K}})$ such that

- x and y have the same restrictions to H¹(G_{Fqr}, Aut X_K) and to H¹(G_{Fqs}, Aut X_K), but
- x and y have different restrictions to $H^1(G_{\mathbb{F}_{q^t}}, \operatorname{Aut} X_{\overline{K}})$ for every proper divisor t of r or of s.

To prove our theorem (for finite fields), we want to do this in every positive characteristic.

Simplifying assumption: Trivial Galois action.

Life is much simpler when G_K acts trivially.

- $H^1(G_K, A) = \{\text{conjugacy classes of } A\}.$
- restriction : $H^1(G_{\mathbb{F}_q}, A) \to H^1(G_{\mathbb{F}_{q^n}}, A)$ is $[x] \mapsto [x^n]$.

New goal:

- Find a group A that has two elements x and y such that
 - x^r is conjugate to y^r ;
 - x^s is conjugate to y^s ;
 - x^t is not conjugate to y^t for all proper divisors t of r and s.
- Find curve in characteristic p with automorphism group A.
- Extend the base field until $G_{\mathbb{F}_q}$ acts trivially on A.

Nonconstructive solution.

- 1 Find a group A that has two elements x and y such that
 - x^r is conjugate to y^r ;
 - x^s is conjugate to y^s ;
 - x^t is not conjugate to y^t for all proper divisors t of r and s.
- 2 Find curve in characteristic *p* with automorphism group *A*.
- 3 Extend the base field until $G_{\mathbb{F}_q}$ acts trivially on A.

- **1** Take r odd. $A = D_{4rs} = \langle u, v : u^{2rs} = v^2 = 1, vuv = u^{-1} \rangle$. Take $m \equiv 1 \mod r$, $m \equiv -1 \mod 2s$. Set $x = u, y = u^m$.
- ② Madden and Valentini: Every group occurs as automorphism group of some curve over $\overline{\mathbb{F}}_p$.
- **3** No control over genus or the extension of \mathbb{F}_p we will need.

More constructive solution.

- 1 Find a group A that has two elements x and y such that
 - x^r is conjugate to y^r ;
 - x^s is conjugate to y^s;
 - x^t is not conjugate to y^t for all proper divisors t of r and s.
- 2 Find curve in characteristic *p* with automorphism group *A*.
- $\boxed{\mathbf{3}}$ Extend the base field until $G_{\mathbb{F}_q}$ acts trivially on A.

- Find integer n that is
 - coprime to characteristic,
 - divisible by at least two odd primes,
 - divisible by a prime $\equiv 1 \mod 2rs$.

Take $A = SL_2(\mathbb{Z}/n\mathbb{Z})/\{\pm 1\}$. There are good x and y in A.

- ② Goldstein and Guralnick: X(n) has automorphism group A.
- **3** Can take $q = p^2$. Genus is at least $(2rs)^3$.

Very explicit constructions.

Very explicit examples in characteristic *p*:

- When p does not divide rs.
- When r = p and p does not divide s.

These examples prove theorem in characteristic 0.

For instance:

If K is a field that

- is a finite extension of its prime field,
- has characteristic not dividing 2rs,
- contains the 4rs-th roots of unity,

then we can take C and D to be twists of $y^2 = x^{2rs} + 1$.

Original question and some followups.

When r = 2 and s = 3, are there examples for every q?

- If q is not a power of 3, examples of genus 2.
- If $q = 3^{\text{odd}}$, examples of genus 1.
- If $q = 3^{\text{even}}$, use twists of X(65). Genus is 9913!

Anything special about C and D?

If K is finite, we can show that the geometric automorphism groups of C and D...

- are non-abelian;
- have order divisible by rs;
- have order greater than rs.

Two of many open questions.

Specifying all the fields.

Given a field K and two (linearly disjoint?) finite extensions L and M of K:

Do there exist curves C and D over K having L and M as minimal isomorphism extensions?

Specifying an automorphism group over a finite field.

Given

- a finite field \mathbb{F}_q ,
- a finite group A, and
- an automorphism φ of A,

does there exists a curve over \mathbb{F}_q with geometric automorphism group A, on which Frobenius acts like φ ?