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An innocent question.

Suppose
K is a field,
L is an extension of K ,
C is a curve over K .

Definition
An L-twist of C is a curve D over K , isomorphic to C over L.

Question
Let C and D be curves over Fq.

Suppose D is both an Fq2-twist and a Fq3-twist of C.

Must D be isomorphic to C (over Fq)?
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Followup questions.

Suppose D is both an Fq2 -twist and a Fq3 -twist of C. Must D be isomorphic to C?

If answer is yes:
Anything special about quadratic and cubic extensions?
What about infinite base fields?

If answer is no:
Same questions as above, plus. . .

Does the answer depend on q?
Anything special about C and D?
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Minimal isomorphism extensions.

Definition
Let C and D be curves over a field K .
Let L be a finite extension of K .
L is a minimal isomorphism extension for C and D if

C and D become isomorphic to one another over L,
but not over any proper subextension of L/K .

So our original question is:

Question
Do there exist curves C and D over Fq for which both Fq2 and
Fq3 are minimal isomorphism extensions?
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Answering a different question.

Theorem
Given

an arbitrary prime field K0 and
integers r > 1 and s > 1 with gcd(r , s) = 1,

there exist
a finite extension K of K0 and
two curves C and D over K

such that C and D have minimal isomorphism extensions of
degrees r and s over K .
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How to approach these questions.

Relate the questions to Galois cohomology.
Turn the cohomology questions into group theory.
For existence results, make simplifying assumptions!
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Galois cohomology – an especially easy case.

Notation and assumptions
K is a field, K its separable closure, GK = Gal(K/K ).

A is a torsion group on which GK acts continuously.

Suppose GK
∼= Ẑ, with topological generator ϕ.

Examples: K = Fq or K = C((t)).

Definitions
A cocycle is an element of A.
Cocycles x1 and x2 are cohomologous if x2 = y−1x1yϕ for
some y ∈ A.
H1(GK , A) = cohomology classes of cocycles.
This is a set, with a distinguished element: [IdA].
Not a group, unless A is abelian.
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Twists and cohomology, with same assumptions on K .

Suppose X is a curve over K , viewed as scheme over Spec K .

If L is an extension of K , set XL = X ×Spec K Spec L.

Fundamental facts

Have bijection:
{

K -twists of X
}

/∼= oo // H1(GK , Aut XK )

Restriction map: H1(GK , Aut XK ) // H1(GL, Aut XK )

Suppose L/K separable, degree n.
Class of cocycle x goes to class of xxϕ · · · xϕn−1

.

We have
{

K -twists of X
}

/∼= oo //

natural
��

H1(GK , Aut XK )

restriction
��{

K -twists of XL
}

/∼= oo // H1(GL, Aut XK )
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The innocent question (cohomological version).

Question
Let K = Fq, and let C be a curve over K .

Suppose an element of H1(GK , Aut CK ) becomes trivial in
H1(GFq2 , Aut CK ) and in H1(GFq3 , Aut CK ).

Must it be trivial in H1(GK , Aut CK )?
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For theorem: Put C and D on equal footing.

Let r > 1 and s > 1 be two integers with gcd(r , s) = 1.

Goal:
Find a curve X over Fq and x , y ∈ H1(GFq , Aut XK ) such that

x and y have the same restrictions to H1(GFqr , Aut XK ) and
to H1(GFqs , Aut XK ), but

x and y have different restrictions to H1(GFqt , Aut XK ) for
every proper divisor t of r or of s.

To prove our theorem (for finite fields), we want to do this in
every positive characteristic.
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Simplifying assumption: Trivial Galois action.

Life is much simpler when GK acts trivially.

H1(GK , A) = {conjugacy classes of A}.
restriction : H1(GFq , A) → H1(GFqn , A) is [x ] 7→ [xn].

New goal:
Find a group A that has two elements x and y such that

x r is conjugate to y r ;
xs is conjugate to ys;
x t is not conjugate to y t for all proper divisors t of r and s.

Find curve in characteristic p with automorphism group A.
Extend the base field until GFq acts trivially on A.
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Nonconstructive solution.

1 Find a group A that has two elements x and y such that
x r is conjugate to y r ;
xs is conjugate to ys ;
x t is not conjugate to y t for all proper divisors t of r and s.

2 Find curve in characteristic p with automorphism group A.
3 Extend the base field until GFq acts trivially on A.

1 Take r odd. A = D4rs = 〈u, v : u2rs = v2 = 1, vuv = u−1〉.
Take m ≡ 1 mod r , m ≡ −1 mod 2s. Set x = u, y = um.

2 Madden and Valentini: Every group occurs as
automorphism group of some curve over Fp.

3 No control over genus or the extension of Fp we will need.
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More constructive solution.

1 Find a group A that has two elements x and y such that
x r is conjugate to y r ;
xs is conjugate to ys ;
x t is not conjugate to y t for all proper divisors t of r and s.

2 Find curve in characteristic p with automorphism group A.
3 Extend the base field until GFq acts trivially on A.

1 Find integer n that is
coprime to characteristic,
divisible by at least two odd primes,
divisible by a prime ≡ 1 mod 2rs.

Take A = SL2(Z/nZ)/{±1}. There are good x and y in A.
2 Goldstein and Guralnick: X (n) has automorphism group A.
3 Can take q = p2. Genus is at least (2rs)3.
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Very explicit constructions.

Very explicit examples in characteristic p:
When p does not divide rs.
When r = p and p does not divide s.

These examples prove theorem in characteristic 0.

For instance:
If K is a field that

is a finite extension of its prime field,
has characteristic not dividing 2rs,
contains the 4rs-th roots of unity,

then we can take C and D to be twists of y2 = x2rs + 1.
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Original question and some followups.

When r = 2 and s = 3, are there examples for every q?
If q is not a power of 3, examples of genus 2.
If q = 3odd, examples of genus 1.
If q = 3even, use twists of X (65). Genus is 9913!

Anything special about C and D?
If K is finite, we can show that the geometric automorphism
groups of C and D . . .

are non-abelian;
have order divisible by rs;
have order greater than rs.
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Two of many open questions.

Specifying all the fields.
Given a field K and two (linearly disjoint?) finite extensions L
and M of K :

Do there exist curves C and D over K having L and M as
minimal isomorphism extensions?

Specifying an automorphism group over a finite field.
Given

a finite field Fq,
a finite group A, and
an automorphism ϕ of A,

does there exists a curve over Fq with geometric automorphism
group A, on which Frobenius acts like ϕ?
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