Abelian varieties without algebraic geometry (revised slides) Everett W. Howe Center for Communications Research, La Jolla Geometric Cryptography Guadeloupe, 27 April – 1 May 2009 ### The goal of this talk Forty years ago: Deligne gave a nice description of the category of ordinary abelian varieties. Fifteen years ago: I added dual varieties and polarizations. Today: I'll explain all this, and give applications. ### Philosophy Understand ordinary abelian varieties in terms of lattices over number rings. ### Motivation (for me, not Deligne) Objects with two or more dimensions are hard to understand. # Ordinary abelian varieties #### Definition ### Suppose - k is a finite field of characteristic p, - A is a g-dimensional abelian variety over k, - f is the characteristic polynomial of Frobenius for A (the Weil polynomial for A). We say that *A* is ordinary if one of the following equivalent conditions holds: - $\#A(\overline{k})[p] = p^g$; - The local-local group scheme α_p can't be embedded in A; - Exactly half of the roots of f in $\overline{\mathbb{Q}}_p$ are p-adic units; - The middle coefficient of f is coprime to p. # The category of Deligne modules #### Definition Let \mathcal{L}_q be the category whose objects are pairs (T, F), where - T is a finitely-generated free \mathbb{Z} -module of even rank, - F is an endomorphism of T such that - The endomorphism $F \otimes \mathbb{Q}$ of $T \otimes \mathbb{Q}$ is a semi-simple, and its complex eigenvalues have magnitude \sqrt{q} ; - Exactly half of the roots of the characteristic polynomial of F in ℚ_p are p-adic units; - There is an endomorphism V of T with FV = q. and whose morphisms are \mathbb{Z} -module morphisms that respect F. We call \mathcal{L}_q the category of Deligne modules over \mathbb{F}_q . # Deligne's equivalence of categories #### **Theorem** There is an equivalence between the category of ordinary abelian varieties over \mathbb{F}_q and the category \mathcal{L}_q that takes g-dimensional varieties to pairs (T,F) with $\mathrm{rank}_{\mathbb{Z}} T=2g$. ### The equivalence requires a nasty choice Let W be the ring of Witt vectors over $\overline{\mathbb{F}}_q$. Let ε be an embedding of W into \mathbb{C} . Let v be the corresponding p-adic valuation on $\overline{\mathbb{Q}}$. Given A/\mathbb{F}_q , let \widetilde{A} be the complex abelian variety obtained from the canonical lift of A over W by base extension to \mathbb{C} via ε . Let $T = H_1(\widetilde{A})$, and let F be the lift of Frobenius. # Extending the equivalence: Dual varieties #### **Definition** Given (T, F) in \mathcal{L}_q , let $\widehat{T} = \text{Hom}(T, \mathbb{Z})$. Let \widehat{F} be the endomorphism of \widehat{T} such that for $\psi \in \widehat{T}$ $$\widehat{F}\psi(x) = \psi(Vx)$$ for all $x \in T$. The dual of (T, F) is $(\widehat{T}, \widehat{F})$. #### **Theorem** Deligne's equivalence respects duality. # Extending the equivalence: Polarizations Given $(T, F) \in \mathcal{L}_q$, let $$R = \mathbb{Z}[F, V] \subseteq \operatorname{End}(T, F)$$ $K = R \otimes \mathbb{Q} = \prod K_i$ The *p*-adic valuation v on $\mathbb C$ obtained from $\varepsilon:W\hookrightarrow\mathbb C$ gives us a CM-type on K: $$\Phi := \{ \varphi : K \to \mathbb{C} \mid v(\varphi(F)) > 0 \}.$$ Let ι be any element of K such that $\forall \varphi \in \Phi : \varphi(\iota)$ is positive imaginary. ### Polarizations, continued Suppose λ is an isogeny from (T, F) to its dual $(\widehat{T}, \widehat{F})$. This gives us a pairing $b: T \times T \to \mathbb{Z}$. #### Definition The isogeny λ is a polarization if - The pairing b is alternating, and - The pairing $(x, y) \mapsto b(\iota x, y)$ on $T \times T$ is symmetric and positive definite. #### **Theorem** Deligne's equivalence takes polarizations to polarizations. # Extending the equivalence: Kernels of isogenies Let $\lambda: (T_1,F_1) \to (T_2,F_2)$ be an isogeny of Deligne modules. Let $\lambda_{\mathbb{Q}}$ be the induced isomorphism $T_1 \otimes \mathbb{Q} \to T_2 \otimes \mathbb{Q}$. The kernel of λ is the $\mathbb{Z}[F_1,V_1]$ -module $\lambda_{\mathbb{Q}}^{-1}(T_2)/T_1$. #### **Theorem** Suppose $\mu: A_1 \to A_2$ is the isogeny of abelian varieties corresponding to $\lambda.$ Then $$\# \ker \mu = \# \ker \lambda$$ and the action of Frobenius on the étale quotient of $\ker \mu$ is isomorphic to the action of F_1 on the quotient of $\ker \lambda$ by the submodule where F_1 acts as 0. ### Application 1: Galois descent (w/Lauter) Suppose \mathcal{I} is an ordinary isogeny class over \mathbb{F}_q . Let h be the *minimal* polynomial of F + V. The action of $\mathbb{Z}[F, V]$ on a Deligne module T factors through $$\mathbb{Z}[X, Y]/(h(X + Y), XY - q) =: \mathbb{Z}[\pi, \overline{\pi}].$$ Let \mathcal{I}_n be the base extension of \mathcal{I} to \mathbb{F}_{q^n} . #### **Theorem** If $\mathbb{Z}[\pi^n, \overline{\pi}^n] = \mathbb{Z}[\pi, \overline{\pi}]$ then every variety in \mathcal{I}_n comes from a variety in \mathcal{I} . Note: Ordinariness is quite important here. # Restricting to a simple isogeny class #### **Notation** $\mathcal{I}=\mathsf{a}$ simple ordinary isogeny class in \mathcal{L}_q $$R = \mathbb{Z}[\pi, \overline{\pi}]$$ $$K = R \otimes \mathbb{Q}$$ $K^+ = \text{maximal real subfield of } K$ $\Phi = CM$ -type on K as above. If (T, F) is a Deligne module in \mathcal{I} , then $T \otimes \mathbb{Q}$ is a 1-dimensional K-vector space. So $\left\{ \text{Deligne modules in } \mathcal{I} \right\} \longleftrightarrow \left\{ \begin{array}{l} \text{isomorphism classes of} \\ \text{fractional } \textit{R}\text{-ideals in } \textit{K} \end{array} \right\}$ # Polarizations in a simple isogeny class Let \mathfrak{A} be a fractional R-ideal. Identify $\text{Hom}(\mathfrak{A},\mathbb{Z})$ with the dual \mathfrak{A}^{\dagger} of \mathfrak{A} under the trace pairing $$K \times K \to \mathbb{Q}$$ $(x,y) \mapsto \mathsf{Trace}_{K/\mathbb{Q}}(xy)$ Then $\widehat{\mathfrak{A}} = \overline{\mathfrak{A}^{\dagger}}$, where the overline means complex conjugation. #### **Theorem** A polarization of $\mathfrak A$ is a $\lambda \in K^*$ such that - $\lambda \mathfrak{A} \subseteq \widehat{\mathfrak{A}}$, - λ is totally imaginary, - $\varphi(\lambda)$ is positive imaginary for all $\varphi \in \Phi$. # Deligne modules with maximal endomorphism rings If $\mathfrak A$ is actually an $\mathcal O_K$ -ideal, then $$\widehat{\mathfrak{A}} = \overline{\mathfrak{d}^{-1}\mathfrak{A}^{-1}} = \mathfrak{d}^{-1}\overline{\mathfrak{A}^{-1}}$$ where \mathfrak{d} is the different of K/\mathbb{Q} . #### **Theorem** Let N be the norm from CI K to CI⁺ K⁺. There is an ideal class $[\mathfrak{B}] \in \text{CI}^+ K^+$ such that a Deligne module \mathfrak{A} with $\text{End } \mathfrak{A} = \mathcal{O}_K$ has a principal polarization if and only if $N([\mathfrak{A}]) = [\mathfrak{B}]$. Proof: Note that $\lambda \mathfrak{A} = \mathfrak{d}^{-1} \overline{\mathfrak{A}^{-1}} \Longleftrightarrow \mathfrak{A} \overline{\mathfrak{A}} = 1/(\lambda \mathfrak{d}).$ Then prove that $\lambda \mathfrak{d}$ is an ideal of K^+ whose strict class doesn't depend on the choice of positive imaginary λ . # Application 2: Near-ubiquity of principal polarizations ### Class field theory The norm map $Cl K \to Cl^+ K^+$ is surjective if K/K^+ is ramified at a finite prime. #### **Theorem** A simple ordinary isogeny class contains a principally polarized variety if K/K^+ is ramified at a finite prime. In particular, a simple ordinary odd-dimensional isogeny class contains a principally polarized variety. # Application 3: Non-existence of principal polarizations #### **Theorem** A 2-dimensional isogeny class of abelian varieties over \mathbb{F}_q contains no principally-polarized varieties if and only if its real Weil polynomial is $x^2 + ax + (a^2 + q)$, where - $a^2 < q$, - gcd(a, q) = 1, and - $a^2 \equiv q \mod p \Longrightarrow p \equiv 1 \mod 3$. # From simple to non-simple isogeny classes We can piece together information about simple classes to learn about non-simple classes. ### Example: Principal polarizations Suppose \mathcal{I}_1 and \mathcal{I}_2 are isogeny classes with $\text{Hom}(\mathcal{I}_1, \mathcal{I}_2) = 0$. Goal: Study principally polarized varieties in the isogeny class $$\begin{split} \mathcal{J} &= \mathcal{I}_1 \times \mathcal{I}_2 \\ &= \{ \text{abelian varieties isogenous to } \textit{A}_1 \times \textit{A}_2 \text{: } \textit{A}_1 \in \mathcal{I}_1, \textit{A}_2 \in \mathcal{I}_2 \} \end{split}$$ Suppose P in \mathcal{J} has a principal polarization μ . P is isogenous to $A_1 \times A_2$, so. . . Projections $B_1 \times B_2 \to B_i$ give injections $\Delta \hookrightarrow B_1$ and $\Delta \hookrightarrow B_2$. Pullback of μ to $B_1 \times B_2$ is $\lambda_1 \times \lambda_2$, and $\ker \lambda_1 \cong \Delta \cong \ker \lambda_2$. As per Kristin: Can bound size of Δ . # Application 4: Ordinary times supersingular (w/Lauter) Suppose $q = s^2$ and h is an ordinary real Weil polynomial. #### **Theorem** ### Suppose - n := h(2s) is squarefree and coprime to q, - P is an abelian variety over \mathbb{F}_q with real Weil polynomial $h(x) \cdot (x-2s)^n$, - μ is a principal polarization on P. Then there is an isomorphism $P \cong B_1 \times B_2$ that takes μ to a product polarization $\lambda_1 \times \lambda_2$, where B_1 is ordinary and B_2 is isogenous to a power of a supersingular elliptic curve. # Ordinary times supersingular: Sketch of proof We already know that we can write $$0 \longrightarrow \Delta \longrightarrow B_1 \times B_2 \longrightarrow P \longrightarrow 0$$ and pull back μ to $\lambda_1 \times \lambda_2$, where $\ker \lambda_1 \cong \Delta \cong \ker \lambda_2$. #### Note: - F + V acts as 2s on ker λ_2 . - F + V satisfies h on ker λ_1 . - So 0 = h(F + V) = h(2s) = n on Δ . Question: Can we fit an *n*-torsion Δ with a non-degenerate pairing into B_1 and B_2 ? Suffices to consider case where n is prime. ### Sketch of proof: Further restrictions on Δ On the supersingular variety B_2 we know that F and V act as s. So the image of Δ in B_1 lies in the portion of B_1 where n=0 and F=s and V=s. Let \mathfrak{p} be the ideal $(n, \pi_1 - s, \overline{\pi}_1 - s)$ of $R = \mathbb{Z}[\pi_1, \overline{\pi}_1]$. #### Check: - \mathfrak{p} is a non-singular prime of R with residue field \mathbb{F}_n . - If $\mathfrak A$ is a Deligne module with real Weil polynomial h, then the kernel of $\mathfrak p$ acting on $\mathfrak A$ has order n. - There are no étale group schemes of prime order with non-degenerate pairings. # Sketch of proof: The end So in our exact sequence $$0 \longrightarrow \Delta \longrightarrow B_1 \times B_2 \longrightarrow P \longrightarrow 0$$ we have $\Delta = 0$. ### Corollary If $q=s^2$ and h is an ordinary real Weil polynomial with h(2s) squarefree and coprime to q, then there is no Jacobian with real Weil polynomial $$h(x) \cdot (x-2s)^n$$ for $n > 0$.