# Abelian varieties without algebraic geometry (revised slides)

Everett W. Howe

Center for Communications Research, La Jolla

Geometric Cryptography Guadeloupe, 27 April – 1 May 2009

### The goal of this talk

Forty years ago: Deligne gave a nice description of the

category of ordinary abelian varieties.

Fifteen years ago: I added dual varieties and polarizations.

Today: I'll explain all this, and give applications.

### Philosophy

Understand ordinary abelian varieties in terms of lattices over number rings.

### Motivation (for me, not Deligne)

Objects with two or more dimensions are hard to understand.

# Ordinary abelian varieties

#### Definition

### Suppose

- k is a finite field of characteristic p,
- A is a g-dimensional abelian variety over k,
- f is the characteristic polynomial of Frobenius for A (the Weil polynomial for A).

We say that *A* is ordinary if one of the following equivalent conditions holds:

- $\#A(\overline{k})[p] = p^g$ ;
- The local-local group scheme  $\alpha_p$  can't be embedded in A;
- Exactly half of the roots of f in  $\overline{\mathbb{Q}}_p$  are p-adic units;
- The middle coefficient of f is coprime to p.

# The category of Deligne modules

#### Definition

Let  $\mathcal{L}_q$  be the category whose objects are pairs (T, F), where

- T is a finitely-generated free  $\mathbb{Z}$ -module of even rank,
- F is an endomorphism of T such that
  - The endomorphism  $F \otimes \mathbb{Q}$  of  $T \otimes \mathbb{Q}$  is a semi-simple, and its complex eigenvalues have magnitude  $\sqrt{q}$ ;
  - Exactly half of the roots of the characteristic polynomial of F in ℚ<sub>p</sub> are p-adic units;
  - There is an endomorphism V of T with FV = q.

and whose morphisms are  $\mathbb{Z}$ -module morphisms that respect F.

We call  $\mathcal{L}_q$  the category of Deligne modules over  $\mathbb{F}_q$ .

# Deligne's equivalence of categories

#### **Theorem**

There is an equivalence between the category of ordinary abelian varieties over  $\mathbb{F}_q$  and the category  $\mathcal{L}_q$  that takes g-dimensional varieties to pairs (T,F) with  $\mathrm{rank}_{\mathbb{Z}} T=2g$ .

### The equivalence requires a nasty choice

Let W be the ring of Witt vectors over  $\overline{\mathbb{F}}_q$ . Let  $\varepsilon$  be an embedding of W into  $\mathbb{C}$ . Let v be the corresponding p-adic valuation on  $\overline{\mathbb{Q}}$ .

Given  $A/\mathbb{F}_q$ , let  $\widetilde{A}$  be the complex abelian variety obtained from the canonical lift of A over W by base extension to  $\mathbb{C}$  via  $\varepsilon$ .

Let  $T = H_1(\widetilde{A})$ , and let F be the lift of Frobenius.

# Extending the equivalence: Dual varieties

#### **Definition**

Given (T, F) in  $\mathcal{L}_q$ , let  $\widehat{T} = \text{Hom}(T, \mathbb{Z})$ .

Let  $\widehat{F}$  be the endomorphism of  $\widehat{T}$  such that for  $\psi \in \widehat{T}$ 

$$\widehat{F}\psi(x) = \psi(Vx)$$
 for all  $x \in T$ .

The dual of (T, F) is  $(\widehat{T}, \widehat{F})$ .

#### **Theorem**

Deligne's equivalence respects duality.

# Extending the equivalence: Polarizations

Given  $(T, F) \in \mathcal{L}_q$ , let

$$R = \mathbb{Z}[F, V] \subseteq \operatorname{End}(T, F)$$
 $K = R \otimes \mathbb{Q} = \prod K_i$ 

The *p*-adic valuation v on  $\mathbb C$  obtained from  $\varepsilon:W\hookrightarrow\mathbb C$  gives us a CM-type on K:

$$\Phi := \{ \varphi : K \to \mathbb{C} \mid v(\varphi(F)) > 0 \}.$$

Let  $\iota$  be any element of K such that

 $\forall \varphi \in \Phi : \varphi(\iota)$  is positive imaginary.

### Polarizations, continued

Suppose  $\lambda$  is an isogeny from (T, F) to its dual  $(\widehat{T}, \widehat{F})$ . This gives us a pairing  $b: T \times T \to \mathbb{Z}$ .

#### Definition

The isogeny  $\lambda$  is a polarization if

- The pairing b is alternating, and
- The pairing  $(x, y) \mapsto b(\iota x, y)$  on  $T \times T$  is symmetric and positive definite.

#### **Theorem**

Deligne's equivalence takes polarizations to polarizations.

# Extending the equivalence: Kernels of isogenies

Let  $\lambda: (T_1,F_1) \to (T_2,F_2)$  be an isogeny of Deligne modules. Let  $\lambda_{\mathbb{Q}}$  be the induced isomorphism  $T_1 \otimes \mathbb{Q} \to T_2 \otimes \mathbb{Q}$ . The kernel of  $\lambda$  is the  $\mathbb{Z}[F_1,V_1]$ -module  $\lambda_{\mathbb{Q}}^{-1}(T_2)/T_1$ .

#### **Theorem**

Suppose  $\mu: A_1 \to A_2$  is the isogeny of abelian varieties corresponding to  $\lambda.$  Then

$$\# \ker \mu = \# \ker \lambda$$

and the action of Frobenius on the étale quotient of  $\ker \mu$  is isomorphic to the action of  $F_1$  on the quotient of  $\ker \lambda$  by the submodule where  $F_1$  acts as 0.

### Application 1: Galois descent (w/Lauter)

Suppose  $\mathcal{I}$  is an ordinary isogeny class over  $\mathbb{F}_q$ . Let h be the *minimal* polynomial of F + V.

The action of  $\mathbb{Z}[F, V]$  on a Deligne module T factors through

$$\mathbb{Z}[X, Y]/(h(X + Y), XY - q) =: \mathbb{Z}[\pi, \overline{\pi}].$$

Let  $\mathcal{I}_n$  be the base extension of  $\mathcal{I}$  to  $\mathbb{F}_{q^n}$ .

#### **Theorem**

If  $\mathbb{Z}[\pi^n, \overline{\pi}^n] = \mathbb{Z}[\pi, \overline{\pi}]$  then every variety in  $\mathcal{I}_n$  comes from a variety in  $\mathcal{I}$ .

Note: Ordinariness is quite important here.

# Restricting to a simple isogeny class

#### **Notation**

 $\mathcal{I}=\mathsf{a}$  simple ordinary isogeny class in  $\mathcal{L}_q$ 

$$R = \mathbb{Z}[\pi, \overline{\pi}]$$

$$K = R \otimes \mathbb{Q}$$

 $K^+ = \text{maximal real subfield of } K$ 

 $\Phi = CM$ -type on K as above.

If (T, F) is a Deligne module in  $\mathcal{I}$ , then  $T \otimes \mathbb{Q}$  is a 1-dimensional K-vector space. So

 $\left\{ \text{Deligne modules in } \mathcal{I} \right\} \longleftrightarrow \left\{ \begin{array}{l} \text{isomorphism classes of} \\ \text{fractional } \textit{R}\text{-ideals in } \textit{K} \end{array} \right\}$ 

# Polarizations in a simple isogeny class

Let  $\mathfrak{A}$  be a fractional R-ideal.

Identify  $\text{Hom}(\mathfrak{A},\mathbb{Z})$  with the dual  $\mathfrak{A}^{\dagger}$  of  $\mathfrak{A}$  under the trace pairing

$$K \times K \to \mathbb{Q}$$
  
 $(x,y) \mapsto \mathsf{Trace}_{K/\mathbb{Q}}(xy)$ 

Then  $\widehat{\mathfrak{A}} = \overline{\mathfrak{A}^{\dagger}}$ , where the overline means complex conjugation.

#### **Theorem**

A polarization of  $\mathfrak A$  is a  $\lambda \in K^*$  such that

- $\lambda \mathfrak{A} \subseteq \widehat{\mathfrak{A}}$ ,
- $\lambda$  is totally imaginary,
- $\varphi(\lambda)$  is positive imaginary for all  $\varphi \in \Phi$ .

# Deligne modules with maximal endomorphism rings

If  $\mathfrak A$  is actually an  $\mathcal O_K$ -ideal, then

$$\widehat{\mathfrak{A}} = \overline{\mathfrak{d}^{-1}\mathfrak{A}^{-1}} = \mathfrak{d}^{-1}\overline{\mathfrak{A}^{-1}}$$

where  $\mathfrak{d}$  is the different of  $K/\mathbb{Q}$ .

#### **Theorem**

Let N be the norm from CI K to CI<sup>+</sup> K<sup>+</sup>. There is an ideal class  $[\mathfrak{B}] \in \text{CI}^+ K^+$  such that a Deligne module  $\mathfrak{A}$  with  $\text{End } \mathfrak{A} = \mathcal{O}_K$  has a principal polarization if and only if  $N([\mathfrak{A}]) = [\mathfrak{B}]$ .

Proof: Note that  $\lambda \mathfrak{A} = \mathfrak{d}^{-1} \overline{\mathfrak{A}^{-1}} \Longleftrightarrow \mathfrak{A} \overline{\mathfrak{A}} = 1/(\lambda \mathfrak{d}).$ 

Then prove that  $\lambda \mathfrak{d}$  is an ideal of  $K^+$  whose strict class doesn't depend on the choice of positive imaginary  $\lambda$ .

# Application 2: Near-ubiquity of principal polarizations

### Class field theory

The norm map  $Cl K \to Cl^+ K^+$  is surjective if  $K/K^+$  is ramified at a finite prime.

#### **Theorem**

A simple ordinary isogeny class contains a principally polarized variety if  $K/K^+$  is ramified at a finite prime.

In particular, a simple ordinary odd-dimensional isogeny class contains a principally polarized variety.

# Application 3: Non-existence of principal polarizations

#### **Theorem**

A 2-dimensional isogeny class of abelian varieties over  $\mathbb{F}_q$  contains no principally-polarized varieties if and only if its real Weil polynomial is  $x^2 + ax + (a^2 + q)$ , where

- $a^2 < q$ ,
- gcd(a, q) = 1, and
- $a^2 \equiv q \mod p \Longrightarrow p \equiv 1 \mod 3$ .

# From simple to non-simple isogeny classes

We can piece together information about simple classes to learn about non-simple classes.

### Example: Principal polarizations

Suppose  $\mathcal{I}_1$  and  $\mathcal{I}_2$  are isogeny classes with  $\text{Hom}(\mathcal{I}_1, \mathcal{I}_2) = 0$ . Goal: Study principally polarized varieties in the isogeny class

$$\begin{split} \mathcal{J} &= \mathcal{I}_1 \times \mathcal{I}_2 \\ &= \{ \text{abelian varieties isogenous to } \textit{A}_1 \times \textit{A}_2 \text{: } \textit{A}_1 \in \mathcal{I}_1, \textit{A}_2 \in \mathcal{I}_2 \} \end{split}$$

Suppose P in  $\mathcal{J}$  has a principal polarization  $\mu$ . P is isogenous to  $A_1 \times A_2$ , so. . .









Projections  $B_1 \times B_2 \to B_i$  give injections  $\Delta \hookrightarrow B_1$  and  $\Delta \hookrightarrow B_2$ .

Pullback of  $\mu$  to  $B_1 \times B_2$  is  $\lambda_1 \times \lambda_2$ , and  $\ker \lambda_1 \cong \Delta \cong \ker \lambda_2$ .

As per Kristin: Can bound size of  $\Delta$ .

# Application 4: Ordinary times supersingular (w/Lauter)

Suppose  $q = s^2$  and h is an ordinary real Weil polynomial.

#### **Theorem**

### Suppose

- n := h(2s) is squarefree and coprime to q,
- P is an abelian variety over  $\mathbb{F}_q$  with real Weil polynomial  $h(x) \cdot (x-2s)^n$ ,
- $\mu$  is a principal polarization on P.

Then there is an isomorphism  $P \cong B_1 \times B_2$  that takes  $\mu$  to a product polarization  $\lambda_1 \times \lambda_2$ , where  $B_1$  is ordinary and  $B_2$  is isogenous to a power of a supersingular elliptic curve.

# Ordinary times supersingular: Sketch of proof

We already know that we can write

$$0 \longrightarrow \Delta \longrightarrow B_1 \times B_2 \longrightarrow P \longrightarrow 0$$

and pull back  $\mu$  to  $\lambda_1 \times \lambda_2$ , where  $\ker \lambda_1 \cong \Delta \cong \ker \lambda_2$ .

#### Note:

- F + V acts as 2s on ker  $\lambda_2$ .
- F + V satisfies h on ker  $\lambda_1$ .
- So 0 = h(F + V) = h(2s) = n on  $\Delta$ .

Question: Can we fit an *n*-torsion  $\Delta$  with a non-degenerate pairing into  $B_1$  and  $B_2$ ?

Suffices to consider case where n is prime.

### Sketch of proof: Further restrictions on $\Delta$

On the supersingular variety  $B_2$  we know that F and V act as s.

So the image of  $\Delta$  in  $B_1$  lies in the portion of  $B_1$  where n=0 and F=s and V=s.

Let  $\mathfrak{p}$  be the ideal  $(n, \pi_1 - s, \overline{\pi}_1 - s)$  of  $R = \mathbb{Z}[\pi_1, \overline{\pi}_1]$ .

#### Check:

- $\mathfrak{p}$  is a non-singular prime of R with residue field  $\mathbb{F}_n$ .
- If  $\mathfrak A$  is a Deligne module with real Weil polynomial h, then the kernel of  $\mathfrak p$  acting on  $\mathfrak A$  has order n.
- There are no étale group schemes of prime order with non-degenerate pairings.

# Sketch of proof: The end

So in our exact sequence

$$0 \longrightarrow \Delta \longrightarrow B_1 \times B_2 \longrightarrow P \longrightarrow 0$$

we have  $\Delta = 0$ .

### Corollary

If  $q=s^2$  and h is an ordinary real Weil polynomial with h(2s) squarefree and coprime to q, then there is no Jacobian with real Weil polynomial

$$h(x) \cdot (x-2s)^n$$
 for  $n > 0$ .