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How many points can there be on a genus-g curve?

For a prime power q and an integer g ≥ 0, set

Nq(g) = max{#C(Fq) : C is a genus-g curve over Fq}.

Questions
What can we say about Nq(g) . . .

Asymptotically?
For specific values of q and g?
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Asymptotic results (q fixed, g →∞).

We set A(q) = lim supg→∞Nq(g)/g.

Weil
We have Nq(g) ≤ q + 1 + 2g

√
q, so A(q) ≤ 2

√
q.

Serre
We have Nq(g) ≤ q + 1 + gb2√qc, so A(q) ≤ b2√qc.

Ihara
We have A(q) ≤ (

√
8q + 1− 1)/2.

Drinfel’d-Vlăduţ
We have A(q) ≤ √q − 1, with equality when q is square.
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Specific values of q and g.

Goal: Find upper and lower bounds on Nq(g).

Lower bounds
Clever people construct curves with many points, using. . .

Class field theory
Towers of curves
Fiber products of Artin-Schreier curves
Modular curves
Other explicit curves
. . .

Many, many people have contributed to the best known lower
bounds for various q and g.
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Specific values of q and g.

Upper bounds
Weil-Serre bound
Oesterlé bound
Other restrictions (Stöhr-Voloch, Fuhrmann-Torres,
Korchmáros-Torres, . . .)

Are these upper bounds on Nq(g) the best possible?

Or can we sometimes do better?
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Weil polynomials.

The Weil polynomial of an abelian variety A over Fq is the
characteristic polynomial of its Frobenius endomorphism.

The Weil polynomial of curve over Fq is the Weil polynomial of
its Jacobian.

If A has dimension n, then its Weil polynomial has the form

x2n + a1x2n−1 + · · ·+ an−1xn+1 + anxn

+ an−1qxn−1 + · · ·+ a1q2n−1x + q2n.

All of its roots in C lie on the circle |z| = √q. Its real roots have
even multiplicity.

Note: The Honda-Tate theorem provides further restrictions.
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More on Weil polynomials.

Since the roots of f come in complex-conjugate pairs, we may
write

f (x) = xnh(x + q/x)

for a unique monic h ∈ Z[x ], the real Weil polynomial of C. The
roots of h are real numbers in the interval [−2

√
q, 2
√

q].

Note that if f = x2n + a1x2n−1 + · · · , then h = xn + a1xn−1 + · · · .

Theorem (Tate)
Two abelian varieties over Fq are isogenous to one another if
and only if they have the same Weil polynomial.
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Weil polynomials of curves.

Suppose C is a genus-g curve over Fq, with Weil polynomial f .
Write f =

∏2g
i=1(x − πi) with πi ∈ C. Then for all d > 0 we have

#C(Fqd ) = qd + 1−
∑

πd
i .

In particular, if f = x2g + a1x2g−1 + · · · , then

#C(Fq) = q + 1 + a1.

These formulas can be used to compute the number of
degree-d places on the curve, for each d .
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Serre’s strategy for bounding Nq(g).

Goal: Show that no genus-g curve over Fq has exactly N
points.

Compute all h = xg + a1xg−1 + · · · with all complex roots
in the real interval [−2

√
q, 2
√

q], where a1 = N − q − 1.
Find a reason why each h can’t come from a curve.

The Honda-Tate conditions.
The number of degree-d places on a curve must be ≥ 0.
The “resultant 1” method.

Eliminate h if h = h1h2 with Res(h1, h2) = 1.

Restrictions when h is the real Weil polynomial of Eg .
Miscellaneous ad hoc methods.
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Extensions to Serre’s techniques.

In 2003, Kristin Lauter and I added some further methods:

The “resultant 2” method.
If h = h1h2 and Res(

√
h1,
√

h2) = 2, then C must be a
double cover of a curve with real Weil polynomial h1 or h2.
(Here

√
hi denotes the radical of hi .)

The “elliptic factor” method.
If h = (x − t)h2 for the real Weil polynomial x − t of an
elliptic curve E , and if r = Res(x − t ,

√
h2), then C has a

map of degree dividing r to an elliptic curve isogenous to E .

Sometimes, contradictions follow.
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Example.

Consider q = 8, g = 9, N = 46.

Let h = (x + 3)4(x + 5)5. All of its roots lie in [−2
√

8, 2
√

8]. Why
isn’t it the real Weil polynomial of a genus-9 curve C over F8?

Answer: The resultant 2 method.
Such a C would be a double cover of a curve with real Weil
polynomial either (x + 3)4 or (x + 5)5.

A curve with real Weil polynomial (x + 5)5 would have fewer
points over F64 than over F8, so (x + 5)5 fails.

A curve with real Weil polynomial (x + 3)4 has 21 points. A
curve with 46 points can’t be a double cover of a curve with 21
points.
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The van der Geer/van der Vlugt tables

Upper and lower bounds on Nq(g), as of January 2002.

g \ q 2 4 8 16 32 64 128

1 5 9 14 25 44 81 150
2 6 10 18 33 53 97 172
3 7 14 24 38 64 113 192
4 8 15 25 45 – 46 71 – 75 129 215 – 217
5 9 17 – 18 29 – 32 49 – 54 83 – 86 132 – 145 227 – 239
6 10 20 33 – 35 65 86 – 97 161 243 – 261
7 10 21 – 22 34 – 39 63 – 70 98 – 108 177 258 – 283
8 11 21 – 24 34 – 43 61 – 76 97 – 119 169 – 193 257 – 305
9 12 26 45 – 47 72 – 81 108 – 130 209 288 – 327

10 13 27 – 28 42 – 50 81 – 87 – 141 225 289 – 349
11 14 26 – 30 48 – 54 80 – 92 120 – 152 201 – 239 – 371
12 14 – 15 29 – 31 49 – 57 83 – 97 129 – 163 257 321 – 393
13 15 33 56 – 61 97 – 103 129 – 174 255 – 270 – 415
14 15 – 16 32 – 35 65 97 – 108 146 – 185 241 – 286 353 – 437
15 17 33 – 37 57 – 68 98 – 113 158 – 196 258 – 302 386 – 459
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The van der Geer/van der Vlugt tables

Upper bounds from 2002, lower bounds from November 2006.

g \ q 2 4 8 16 32 64 128

1 5 9 14 25 44 81 150
2 6 10 18 33 53 97 172
3 7 14 24 38 64 113 192
4 8 15 25 45 – 46 71 – 75 129 215 – 217
5 9 17 – 18 29 – 32 49 – 54 83 – 86 132 – 145 227 – 239
6 10 20 33 – 35 65 86 – 97 161 243 – 261
7 10 21 – 22 34 – 39 63 – 70 98 – 108 177 262 – 283
8 11 21 – 24 35 – 43 62 – 76 97 – 119 169 – 193 276 – 305
9 12 26 45 – 47 72 – 81 108 – 130 209 288 – 327

10 13 27 – 28 42 – 50 81 – 87 113 – 141 225 296 – 349
11 14 26 – 30 48 – 54 80 – 92 120 – 152 201 – 239 294 – 371
12 14 – 15 29 – 31 49 – 57 88 – 97 129 – 163 257 321 – 393
13 15 33 56 – 61 97 – 103 129 – 174 255 – 270 – 415
14 15 – 16 32 – 35 65 97 – 108 146 – 185 241 – 286 353 – 437
15 17 35 – 37 57 – 68 98 – 113 158 – 196 258 – 302 386 – 459
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The van der Geer/van der Vlugt tables

Upper and lower bounds on Nq(g), as of November 2006.

g \ q 2 4 8 16 32 64 128

1 5 9 14 25 44 81 150
2 6 10 18 33 53 97 172
3 7 14 24 38 64 113 192
4 8 15 25 45 – 45 71 – 74 129 215 – 215
5 9 17 – 17 29 – 30 49 – 53 83 – 85 132 – 145 227 – 234
6 10 20 33 – 35 65 86 – 96 161 243 – 258
7 10 21 – 22 34 – 38 63 – 69 98 – 107 177 262 – 283
8 11 21 – 24 35 – 42 62 – 75 97 – 118 169 – 193 276 – 302
9 12 26 45 – 45 72 – 81 108 – 128 209 288 – 322

10 13 27 – 27 42 – 49 81 – 87 113 – 139 225 296 – 345
11 14 26 – 29 48 – 53 80 – 91 120 – 150 201 – 236 294 – 366
12 14 – 15 29 – 31 49 – 57 88 – 97 129 – 161 257 321 – 388
13 15 33 56 – 61 97 – 102 129 – 172 255 – 268 – 408
14 15 – 16 32 – 35 65 97 – 107 146 – 183 241 – 284 353 – 437
15 17 35 – 37 57 – 67 98 – 113 158 – 194 258 – 300 386 – 455
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New methods.

Lauter and I have been revisiting this topic.

New methods
The “reduced resultant 2” method.
The “generalized elliptic factor” method.

Rest of the talk:
Explain the new (and old) methods.
Show some new results.
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The basic idea.

Question underlying the old and new methods:
How close is Jac C to a product of polarized varieties?

Suppose h is the real Weil polynomial of an isogeny class I.

If h = h1h2 for two coprime factors, then I contains A1 × A2,
where Hom(A1, A2) = 0.

(The real Weil polynomial for Ai is hi .)
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Finding the smallest kernel.

0 // ∆′ // A1 × A2 // Jac C // 0
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Finding the smallest kernel.

∆1 ×∆2� _

��

∆1 ×∆2� _

��
0 // ∆′ // A1 × A2 // Jac C // 0
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Finding the smallest kernel.
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Finding the smallest kernel.

∆1 ×∆2� _

��

∆1 ×∆2� _

��
0 // ∆′ //

��

A1 × A2 //

��

Jac C //

��

0

0 // ∆ // B1 × B2 // Jac C // 0

Each Bi is the image of Ai in Jac C.

Projections B1 × B2 → Bi give injections ∆ ↪→ B1 and ∆ ↪→ B2.

Goal: Understand ∆.
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Bounding the size of the kernel ∆.

Let π, π1, π2 be Frobenius on Jac C, B1, B2, respectively.

End Jac COO

?�

� � // (End B1)× (End B2)OO

?�

Z[π, π] � � // Z[π1, π1]× Z[π2, π2]

π � // (π1, π2)
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Bounding the size of the kernel ∆.
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� � // (End B1)× (End B2)OO
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Find ϕ such that ϕ � // (0, n) for some n.
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Bounding the size of the kernel ∆.

Let π, π1, π2 be Frobenius on Jac C, B1, B2, respectively.

End Jac COO

?�

� � // (End B1)× (End B2)OO

?�

Z[π, π] � � // Z[π1, π1]× Z[π2, π2]

π � // (π1, π2)

Find ϕ such that ϕ � // (0, n) for some n.

Then ϕ acts as 0 on B1 ←↩ ∆,
and ϕ acts as n on B2 ←↩ ∆,

so ∆ is killed by n.
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A simpler computation.

Z[π, π] �
� //

OO

?�

Z[π1, π1]× Z[π2, π2]OO

?�

Z[π + π] �
� // Z[π1 + π1]× Z[π2 + π2]

Find n > 0 for which there is a ϕ ∈ Z[π + π] that maps to (0, n).

Let mi = (minimal polynomial of πi + πi ) =
√

hi .

Z[x ]/(m1m2)
� � // Z[x ]/(m1)× Z[x ]/(m2)

Smallest n is the generator of the ideal Z ∩ (m1, m2).
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Reduced resultants.

Definition
The reduced resultant Res′(f , g) of two polynomials f , g ∈ Z[x ]
is the non-negative generator of the ideal Z ∩ (f , g).

To compute Res′(f , g):
Write af + bg = 1 in Q[x ], and then clear denominators.

The reduced resultant divides the usual resultant, and is
divisible by the radical of the usual resultant.

Note
The n we get from Z[π, π] is either Res′(m1, m2) or half this,
and we can easily tell which.

The n we get from Z[π, π] is the modified reduced resultant.
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New versions of old results.

Let h = h1h2 be the real Weil polynomial of an isogeny class I,
where h1 and h2 are coprime.

Let r be the modified reduced resultant of
√

h1 and
√

h2.

Theorem (Serre)
If r = 1 then there is no Jacobian in I.

Theorem
If r = 2 and if Jac C lies in I, then C is a double cover of a
curve D whose real Weil polynomial is either h1 or h2.
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Proof.

Consider the principal polarization λ on Jac C.

Jac C
λ
∼

// Ĵac C

If r = 1 . . .

Then (Jac C, λ) ∼= (B1 × B2, µ1 × µ2), impossible.

If r = 2 . . .

Consider the involution (1,−1) of (B1 × B2, µ1 × µ2):
acts trivially on ∆;
gives an involution of (Jac C, λ);
gives an involution of C, and so a double cover C → D.

Everett W. Howe Upper bounds on the number of points on curves 20



Proof.
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The generalized elliptic factor method.

Suppose I contains En × A, where Hom(E , A) = 0.

Gives h = h1h2 with h1 = (x − t)n, where t = trace(E).

Let r be the modified reduced resultant of
√

h1 and
√

h2.

Theorem
Suppose Jac C lies in I.

If n = 1, then there is a map from C to an elliptic curve
isogenous to E, of degree dividing r .
If n > 1, then there is a map from C to an elliptic curve
isogenous to E, whose degree can be effectively bounded.
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Sketch of proof.

Recall that in general we had

B1 × B2

��

µ1×µ2 // B̂1 × B̂2OO

Jac C
λ
∼

// Ĵac C

where the kernel ∆ of B1 × B2 → Jac C injects into B1 and B2.

Then ∆ ↪→ ker µ1 and ∆ ↪→ ker µ2 as well.
Counting degrees, we find that ker µ1

∼= ∆ ∼= ker µ2.

In present case B1 ∼ En.
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Sketch of proof, n = 1.

F × B2

��

µ1×µ2 // F̂ × B̂2OO

Jac C
λ
∼

// Ĵac C
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Sketch of proof, n = 1.

F

��

µ1 // F̂OO

F × B2

��

µ1×µ2 // F̂ × B̂2OO

Jac C
λ
∼

// Ĵac C
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Sketch of proof, n = 1.

F

��

µ1 // F̂OO

Jac C
λ
∼

// Ĵac C
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Sketch of proof, n = 1.

F

��

µ1 // F̂OO F

C // Jac C
λ
∼

// Ĵac C

Everett W. Howe Upper bounds on the number of points on curves 23



Sketch of proof, n = 1.

F

��

µ1 // F̂OO F

C //@A BC

ϕ

OO

Jac C
λ
∼

// Ĵac C
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Sketch of proof, n = 1.

F

ϕ∗

��

µ1

(deg ϕ)λF

// F̂OO

cϕ∗

F

C //@A BC

ϕ

OO

Jac C
λ
∼

// Ĵac C

µ1 is multiplication-by-deg ϕ, followed by canonical polarization.

Since kernel µ1 is killed by r , deg ϕ divides r .
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Sketch of proof, n > 1.

Recall the statement we want to prove:

We have:
h = h1h2 with h1 = (x − t)n, where t = trace(E).
n > 1.
r is the modified reduced resultant of (x − t) and

√
h2.

A curve C has real Weil polynomial h1h2.

We want to show:
There is a map from C to an elliptic curve isogenous to E ,
whose degree can be effectively bounded.
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Sketch of proof, n > 1.

Let us consider the case where t2 − 4q is a fundamental
discriminant, corresponding to a quadratic order O of class
number 1.

Then B1
∼= En, and a polarization µ1 on B1 can be viewed as a

positive definite Hermitian form H on On.

We have deg µ1 = (det Gram H)2.

Suppose γ = (a1, a2, . . . , an) ∈ On has squared-length m under
H.

Consider the map Γ : E → En given by γ. Then the pullback of
µ1 by Γ is m times the canonical polarization of E .
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The big diagram when n > 1.

En × B2
µ1×µ2 //

��

Ên × B̂2OO

Jac C
λ
∼

// Ĵac C

So deg ϕ = m. We need bounds on the length of the shortest
vector in a Hermitian lattice with a given Gram determinant.
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The big diagram when n > 1.

En µ1 //

��

Ên
OO

En × B2
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The big diagram when n > 1.

En µ1 //

��

Ên
OO

Jac C
λ
∼

// Ĵac C

So deg ϕ = m. We need bounds on the length of the shortest
vector in a Hermitian lattice with a given Gram determinant.
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The big diagram when n > 1.

E
degree m2

//

Γ
��

ÊOO bΓ
En µ1 //

��

Ên
OO

Jac C
λ
∼

// Ĵac C

So deg ϕ = m. We need bounds on the length of the shortest
vector in a Hermitian lattice with a given Gram determinant.
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E
degree m2

//
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The big diagram when n > 1.

E
degree m2

//

��

ÊOO E

C // Jac C
λ
∼

// Ĵac C

So deg ϕ = m. We need bounds on the length of the shortest
vector in a Hermitian lattice with a given Gram determinant.
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The big diagram when n > 1.

E
(deg ϕ)λE

degree m2
//

ϕ∗

��

ÊOO

cϕ∗

E

C //@A BC

ϕ

OO

Jac C
λ
∼

// Ĵac C

So deg ϕ = m. We need bounds on the length of the shortest
vector in a Hermitian lattice with a given Gram determinant.
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An example.

Possible real Weil polynomial for q = 4, g = 7, N = 22:
h = h1h2 with h1 = (x + 3)3 and h2 = x(x + 2)2(x + 4).

Let E have real Weil polynomial x + 3.
E has complex multiplication by O = Z[(1 +

√
−7)/2].

We deduce. . .

a polarization of degree 9 on E3; and therefore
a Hermitian form H on O3 with det Gram H = 3.

If H has vector of squared-length 2, we get double cover
C (with 22 points)→ E (with 8 points), contradiction.

Note: Vector of squared-length 3 doesn’t help us.
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From a Hermitian form to a positive quadratic form.

View O as Z⊕ Z. Then H gives us
an integer-valued positive definite quadratic form P on Z6.

(Note: The associated bilinear form is the real part of H, which
is half-integer valued.)

det Gram P = NO/Z(det Gram H) · |discO/4|3 = 3087/64.
Let M1, . . ., M6 be successive minima of P. Then

M1 · · ·M6 ≤ (64/3)(3087/64) = 1029.

If no vectors of squared-length 1 or 2, then

M1 = M2 = M3 = M4 = M5 = 3 and 3 ≤ M6 ≤ 4.
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Back to the Hermitian form.

The first 5 minima generate a Q-vector space of dimension 5.
So they must generate a Q(

√
−7)-vector space of dimension 3.

Let v1, v2, v3 ∈ O3 be Q(
√
−7)-independent vectors of

squared-length 3.

Let Λ be O-sublattice of O3 generated by v1, v2, v3.

Gram H|Λ =

3 a b
a 3 c
b c 3


det Gram H|Λ = (det Gram H) · NO/Z([O3/Λ]).

positive definite =⇒ a, b, c have norm less than 9.
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A small finite problem.

Algorithm to find bad forms:
Enumerate all possible (a, b, c).
For each triple: Does associated matrix have determinant
3N(A) for an ideal A of O?
If so, find all superlattices on which form has determinant 3.
Compute shortest vector v in each superlattice.
If v has squared-length 3, we have a bad example.

We found no bad examples.

Every polarization of degree 9 on E3 can be pulled back to a
polarization of degree 1 or 4 on E .
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Remark.

This procedure does not scale well to higher dimensions.

When det Gram H is a norm from O, there is a better procedure.

Based on Schiemann’s calculation of all unimodular forms
on On for small n and small O.
When det Gram H is a norm, there is a superlattice on
which H is unimodular.
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Sample optimal bounds.

For the quadratic order O of discriminant −7:

dim\det 1 2 3 4 5 6 7 8 9 10 11 12

2 1 2 2 2 3 2 3 4 4 3 3 4
3 2 2 2 2 2 2 3 4 3 2 3 3
4 2 2 2 3 2 3 3
5 2 2 2 3 2 3 3

Sharp upper bounds on the squared-lengths of short vectors for
Hermitian forms over O of a given dimension and determinant.
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Computer calculations.

Pari/GP code
Given q, g, N, enumerates all polynomials h with

leading terms xg + (N − q − 1)xg−1 + · · · , and
all complex roots in [−2

√
q, 2
√

q].
Uses ideas of McKee and Smyth (ANTS 2004).

Eliminates those that are not Weil polynomials.
Computes all possible splittings h = h1h2.

Computes modifed reduced resultant of each splitting.

Applies Serre’s “reduced resultant 1” criterion.
Applies “reduced resultant 2” method.
Applies generalized elliptic factor method.
If either method gives a cover C → D, checks some
conditions to see whether such a cover is possible.
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New results.

Upper and lower bounds on Nq(g), as of November 2006.

g \ q 2 4 8 16 32 64 128

1 5 9 14 25 44 81 150
2 6 10 18 33 53 97 172
3 7 14 24 38 64 113 192
4 8 15 25 45 71 – 74 129 215
5 9 17 29 – 30 49 – 53 83 – 85 132 – 145 227 – 234
6 10 20 33 – 35 65 86 – 96 161 243 – 258
7 10 21 – 22 34 – 38 63 – 69 98 – 107 177 262 – 283
8 11 21 – 24 35 – 42 62 – 75 97 – 118 169 – 193 276 – 302
9 12 26 45 72 – 81 108 – 128 209 288 – 322

10 13 27 42 – 49 81 – 87 113 – 139 225 296 – 345
11 14 26 – 29 48 – 53 80 – 91 120 – 150 201 – 236 294 – 366
12 14 – 15 29 – 31 49 – 57 88 – 97 129 – 161 257 321 – 388
13 15 33 56 – 61 97 – 102 129 – 172 255 – 268 – 408
14 15 – 16 32 – 35 65 97 – 107 146 – 183 241 – 284 353 – 437
15 17 35 – 37 57 – 67 98 – 113 158 – 194 258 – 300 386 – 455
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New results.

Current upper bounds, lower bounds from November 2006.

g \ q 2 4 8 16 32 64 128

1 5 9 14 25 44 81 150
2 6 10 18 33 53 97 172
3 7 14 24 38 64 113 192
4 8 15 25 45 71 – 72 129 215
5 9 17 29 – 29 49 – 53 83 – 85 132 – 145 227 – 234
6 10 20 33 – 34 65 86 – 96 161 243 – 258
7 10 21 – 21 34 – 38 63 – 69 98 – 107 177 262 – 283
8 11 21 – 24 35 – 42 62 – 75 97 – 118 169 – 193 276 – 302
9 12 26 45 72 – 81 108 – 128 209 288 – 322

10 13 27 42 – 49 81 – 87 113 – 139 225 296 – 345
11 14 26 – 29 48 – 53 80 – 91 120 – 150 201 – 236 294 – 366
12 14 – 15 29 – 31 49 – 57 88 – 97 129 – 160 257 321 – 388
13 15 33 56 – 61 97 – 102 129 – 171 255 – 268 – 408
14 15 – 16 32 – 35 65 97 – 107 146 – 182 241 – 284 353 – 437
15 17 35 – 37 57 – 67 98 – 112 158 – 193 258 – 300 386 – 455
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New results.

Current upper bounds, lower bounds from November 2006.

g \ q 2 4 8 16 32 64 128

1 5 9 14 25 44 81 150
2 6 10 18 33 53 97 172
3 7 14 24 38 64 113 192
4 8 15 25 45 71 – 72 129 215
5 9 17 29 49 – 53 83 – 85 132 – 145 227 – 234
6 10 20 33 – 34 65 86 – 96 161 243 – 258
7 10 21 34 – 38 63 – 69 98 – 107 177 262 – 283
8 11 21 – 24 35 – 42 62 – 75 97 – 118 169 – 193 276 – 302
9 12 26 45 72 – 81 108 – 128 209 288 – 322

10 13 27 42 – 49 81 – 87 113 – 139 225 296 – 345
11 14 26 – 29 48 – 53 80 – 91 120 – 150 201 – 236 294 – 366
12 14 – 15 29 – 31 49 – 57 88 – 97 129 – 160 257 321 – 388
13 15 33 56 – 61 97 – 102 129 – 171 255 – 268 – 408
14 15 – 16 32 – 35 65 97 – 107 146 – 182 241 – 284 353 – 437
15 17 35 – 37 57 – 67 98 – 112 158 – 193 258 – 300 386 – 455
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Tempting partial results.

Genus-12 curves over F2 with 15 points:

Code examined 22 possible polynomials.
All satisfied Honda-Tate conditions.
10 failed “reduced resultant 1” test.
7 failed “reduced resultant 2” test.
None failed “generalized elliptic factor” test.
3 were eliminated by ad hoc methods.

Only two possible real Weil polynomials:
(x + 1)2(x + 2)2(x2 − 2)(x2 + 2x − 2)3

(x2+x−3)(x3+3x2−3)(x3+4x2+3x−1)(x4+4x3+2x2−5x−3)

First has degree-4 map to elliptic curve with 4 points.
Second has F27-rational degree-4 map to elliptic curve over F2
with 2 points.
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