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My connections with Alice

In graduate school
In Ann Arbor
Looking for jobs
As a colleague
As someone interested in improving the culture of mathematics

Lots of people turn 60, but Alice has done more than that. . .
[Explanatory note: Here is where I mentioned Alice’s contributions to mathematics and her support of more junior people — including me, over the

years — and wished her a happy birthday.]
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Part 1: Euler
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An unexpected quotation

Ralph Waldo Emerson, in Nature (1836)
The astronomer, the geometer, rely on their irrefragable analysis, and disdain the
results of observation. The sublime remark of Euler on his law of arches, “This will
be found contrary to all experience, yet is true;” had already transferred nature into
the mind, and left matter like an outcast corpse.

[Here I mentioned that our colleagues in the humanities would say “there’s a lot to unpack here.”]

Many questions
Irrefragable? (It means “irrefutable.”)
Emerson was quoting Euler?!
What is this “Law of arches”?
Did Euler really say this?
If so, why?
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Cribbing from the Romantics

Almost certainly, Emerson was not quoting Euler directly.

Samuel Taylor Coleridge, in Aids to Reflection (1825)
The celebrated Euler having demonstrated certain properties of Arches, adds: “All
experience is in contradiction to this; but this is no reason for doubting its truth.”
The words sound paradoxical; but mean no more than this [. . . ]

Answers and questions
Emerson Coleridge was quoting Euler?!
What is this “Law of arches”? “Certain properties”?
Did Euler really say this?
If so, why?
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Enlightenment!

I doubt Coleridge read Euler. But I bet he read Voltaire.

Voltaire, in Diatribe du docteur Akakia (1752)
He [Euler] asks forgiveness, on his knees, from all logicians for having written, on
the occasion of a result contradicting his calculations: “Indeed, this [calculation]
appears to be less in agreement with the truth; [. . . ] In any case, the calculation
rather than our judgement is to be trusted.”
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Voltaire and Euler

Voltaire wrote the satirical Diatribe du docteur Akakia because he and Euler were
on opposite sides of a contretemps in the court of Frederick the Great.

See: Paul Nahin, Dr. Euler’s fabulous formula (Princeton University Press, 2006).
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Mechanica

Euler: Mechanica (1736), Chapter 3, paragraph 272
Indeed, this [calculation] appears to be less in agreement with the truth; [. . . ] In
any case, the calculation rather than our judgement is to be trusted.

What is the context?

Studying linear motion modeled by d2x
dt2 = kxn.

What happens when x = 0? (n may be negative.)
What happens when x < 0? (n may not be an integer.)
For n ≤ −1, Euler says the object will attain infinite speed as x → 0+. . .
. . . and then immediately reverse course once x = 0.

See: Eberhard Knobloch, “Euler and infinite speed”, Doc. Math. 2012 (extra vol.)
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Mathematical morals

What to take away from this story?
In this case, Euler’s model was not great.
He derived questionable conclusions from this model.
He did not accept criticism.

Coleridge and Emerson loved Euler’s quote, because:
They liked the idea of creating truth from pure thought. . .
. . . without regard to observation;
. . . without having to convince other people.

My takeaway
A proof is not a proof until you’ve convinced someone else.
Listen carefully to criticism.

[This point of view is certainly not new, or original to me. For an application to current events, see Cathy O’Neil’s comments on the ABC conjecture.]
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Part 2: Sleight of hand
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Background

Genus-2 double covers of elliptic curves
Given a genus-2 double cover of an elliptic curve C → E . . .

C

~~
E

Everett W. Howe Fallibility and other real-life problems 11 of 39



Background

Genus-2 double covers of elliptic curves
Given a genus-2 double cover of an elliptic curve C → E . . .
. . . there is a second double cover of an elliptic curve C → F . . .

C

~~   
E F

Everett W. Howe Fallibility and other real-life problems 11 of 39



Background

Genus-2 double covers of elliptic curves
Given a genus-2 double cover of an elliptic curve C → E . . .
. . . there is a second double cover of an elliptic curve C → F . . .
. . . so that both fit into a V4 Galois extension of P1.

C

~~   
E

  

F

��
P1

Everett W. Howe Fallibility and other real-life problems 11 of 39



Background

Genus-2 double covers of elliptic curves
Given a genus-2 double cover of an elliptic curve C → E . . .
. . . there is a second double cover of an elliptic curve C → F . . .
. . . so that both fit into a V4 Galois extension of P1.

C

~~   
E

  

F

��
P1

Old result: versions going back to Königsberger (J. Reine Angew. Math., 1867)
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Communication

Some time ago. . .
A colleague at a university showed me a proof of something they were working on.

Something seemed “off” to me. No mistake jumped out, but. . .

I found a counterexample to a lemma.

A conversation
Me: I think your lemma is wrong; here is a counterexample.

Them: But I have a proof of the lemma.

Me: Um, here’s a counterexample?

Them: But I have a proof.

Me: 〈. . .〉
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A beautiful error

A construction
Them: I have an elliptic curve E . . .

E

  
P1
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Mathematical morals

I made the error easier to see by drawing a diagram.
[Even so, not everyone in the audience spotted it. Hint: Which arrow gets drawn first?]

My colleague’s argument was entirely in words.

Not a single word of their argument was wrong.

This magic trick was created entirely unintentionally.

My takeaway
Errors can be subtle!
It can be very hard to spot our own errors.
We need other people to look at our proofs.
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Part 3: An error in the wild
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Background

Jeff Achter: What are some properties of principally-polarized abelian surfaces
over finite fields that are rare, but not too rare?

If C is a genus-2 curve over Q we can study

πT (C, x) = #

{
p ≤ x :

JacC has good reduction mod p
and the reduction has property T

}
.

Let PT (q) be the probability that a randomly-chosen principally-polarized abelian
surface over Fq has property T .

Naïvely expect πT (C, x) ∼
∑

p<x
PT (p).

If PT (q) > c/q, we expect πT (C, x) to grow visibly over ranges of x where we can
actually compute it.
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Instructive non-example

Consider the property T of not being a Jacobian.

Can show that PnonJac(q) ≈ 1/q.

Naïvely, expect πnonJac(C, x) ∼
∑

p<x
1/p ∼ log log x .

But JacC is a Jacobian modulo p at every prime of good reduction for C, so
πnonJac(C, x) is bounded for every curve C.

This example demonstrates:
Why we would like properties T with PT (q) > c/q, and
That the naïve view is naïve.
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Our choice

We looked at the property T of being split over Fq.

Theorem (Achter-H. 2017)
For all q we have

1
(log q)3(log log q)6 � Psplit(q)

√
q � (log q)4(log log q)2.

Conjecture (Achter-H. 2017)
Let J be the Jacobian of a genus-2 curve over Q with End J = Z. Then there is a
constant cJ > 0 such that

πsplit(J, x) ∼ cJ

√
x

log x
as x →∞.
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The blue curve is
πsplit(C, z) for
C : y2 = x5 + x + 6.

The red curve is
c
√

z/ log z with
c ≈ 4.4651.

[Here I thanked Drew Sutherland verbally —

he provided programs and computer time to

help produce this data.]
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Open questions

1 What are interesting properties T of principally-polarized abelian surfaces
with PT (q) > c/q?

2 What are some approaches to proving the conjecture?
3 We look at surfaces that are split over Fq. What about surfaces that are

geometrically split?
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Moduli spaces of supersingular genus-2 curves

The theorem above gives bounds for the number of non-simple
principally-polarized abelian surfaces over Fq.

A sub-problem
Understand the moduli space of supersingular genus-2 curves.
Moduli space of genus-2 curves: Subvariety of weighted projective space
[J2 : J4 : J6 : J8 : J10].
J10 6= 0, plus single relation: J2J6 = J2

4 + 4J8.

The subvariety of supersingular curves is 1-dimensional, but the number of
components grows with q.

I wanted to look at case q = 5.
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Computing equations for supersingular locus

Quick and dirty method
Compute many supersingular genus-2 curves over F5n .
Compute their Igusa invariants [J2 : J4 : J6 : J8 : J10].
Find low-degree polynomials vanishing at these points.
Can prove guesses later.

Manin and Yui
Curve C : y2 = f = a6x6 + · · ·+ a0 over F5n .

Let g = f 2 = b12x12 + . . .+ b0.

Set M =
[

b4 b3
b9 b8

]
and M(5) =

[
b5

4 b5
3

b5
9 b5

8

]
.

Yui, Manin: C is supersingular if and only if MM(5) = 0.
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Equations for the supersingular locus?

Fit polynomials to many supersingular Igusa invariants in characteristic 5.
In addition to J2J6 = J2

4 + 4J8, found:
J4 = −J2

2 .
Polynomial of weighted degree 1050 in J2, J6, and J10.

Highly singular subvariety ofM2.
Contradicts a result of Koblitz. . .

Where was the problem?
Had we misunderstood the result of Koblitz?
Or is zero truly equal to one?
We computed the zeta function of one of the curves that the Yui/Manin
condition said was supersingular.
It wasn’t supersingular.
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“Sign errors”

Manin (1961) and Yui (1978)

Given a genus-g hyperelliptic curve y2 = f over Fpe , with Jacobian J.
Let σ be the p-power Frobenius. There is a matrix M such that

the p-rank of J is the p-rank of MM(σ)M(σ2) · · ·M(σg−1).
the characteristic polynomial of pe-Frobenius on J is related to the characteristic
polynomial of MM(σ)M(σ2) · · ·M(σe−1).

Yui gives a formula for M in terms of coefficients of f (p−1)/2.

Yui’s formula for M does not work with these results. Need to:
transpose M, or
multiply the matrices in the opposite order, or
replace σ with p-th root automorphism.

Note: For examples in Yui (1978), all M are diagonal, so mistake is not apparent.
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Consequences

Equations for supersingular locus inM2 over F5n

Look at curves with M(5)M = 0.
In addition to J2J6 = J2

4 + 4J8, find:
J4 = −J2

2
J10J2 = 3J2

6 + 2J6J3
2 + 2J6

2

Subvariety is image of [2t2 : t4 : 3t + 4t6 : 4t3 + 3t8 : 1].

Less pleasant consequences
I used the incorrect criterion in an earlier paper!
Panic.
With the correct criterion, my proof still went through. Whew!
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Ramifications

The results from my earlier paper still stood.

What about other papers that used the criterion?

Jeff and I decided to track down papers that cited Yui (1978) or Manin (1961).

Surely that wouldn’t be too many papers. . .
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A total of 91 papers

Many papers were still OK
Cited Manin and Yui as general references, no results quoted.
Or, results were quoted, but:

The quoted results were not applied.
The quoted results did not contain errors.
Errors were silently corrected.

Or, incorrect results were applied, but the formulas worked anyway:
The matrix M was diagonal.
M had entries in Fp or Fp2 , so Mσ = Mσ−1

.
. . .

But eight papers required a closer look.
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Results

We contacted Manin, Yui, and the authors of the eight papers.

They were generous, polite, and glad to learn of the problem.

See the paper that Jeff and I wrote about this for more details.

My takeaway
Mistakes can sit unnoticed for a long time.
Mistakes can spread.
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Part 4: Alice in the real world
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Lessons from mistakes

Everyone makes mistakes.
They can be hard to see ourselves.
They can remain there for years.
Their effects can be widespread.
To find them and fix them, we need to

listen to criticism;
think differently than we may be used to;
not get defensive.
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Alice’s adventures in numberland

For about a year now, Alice has been blogging about stories from her life.

To me, some of these stories seem to be about mistakes:
Mistakes by mathematicians, but not about mathematics.

Among the many experiences she writes of, some tell of mistakes — injustices is a
better word — about how women are treated in our profession.
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A gift

For some of us, Alice’s blog is the gift of a different perspective.

In my life, I’ve seen some of these injustices firsthand, from the low-level everyday
ones to the rare and extraordinary ones. [Some stories were mentioned here.]

But I haven’t seen them all.
Sometimes, I am not in the room to see.
Sometimes, I am present, but do not notice.
Sometimes, I make mistakes myself, despite my best intentions.

Alice’s blog helps me be aware of problems I might otherwise miss —
and there are still more voices to listen to, because sexism is not the only problem.
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A referee report

As mathematicians, we value:
the colleagues who read and comment on our preprints;
the referees who check our reasoning and catch mistakes;
the editors who improve our writing.

We should also value the people who tell stories of how our community fails to live
up to our highest values.
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Open question, closing hope

An open question:
How do we want the community of mathematicians to be experienced — by all of
its members?

A closing hope
May we hear and appreciate criticisms of our community. . .
May we acknowledge the injustices that occur in our profession. . .
And may we actively do something to remedy them.
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