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Acknowledgement and background

Non-historical parts of this talk are based on:
Vassil S. Dimitrov and Everett W. Howe,
Powers of 3 with few nonzero bits and a conjecture of Erdős,
Rocky Mountain J. Math. (to appear)
arXiv: 2105.06440

Background needed: Congruences, the rings Z/mZ, “mathematical maturity.”
So we wrote the paper hoping to make it accessible to undergraduates.
ArXiv versions 1 and 2 are especially approachable.
There are complicated arguments! But no further background is needed.
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Musical demonstration
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Ratios of lengths, and pitches of musical notes

The first string on the ukulele is 34.4 cm long.

How much do we shorten the string to get basic musical intervals?

Length of Decimal Rational
Relative pitch string (cm) fraction fraction

Octave 17.2 0.50 1/2
Fifth 23.0 0.67 2/3
Fourth 25.8 0.75 3/4
Third 27.4 0.80 4/5
Whole step 30.6 0.89 8/9

14th century European music theorists didn’t like the musical interval of a third.
The intervals they did like correspond to the fractions 1/2, 2/3, 3/4, 8/9.
What are some things you notice about these fractions?
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Our 14th century cast of characters

Philippe de Vitry (1291–1361)
French Catholic priest and musician
Wrote Ars nova notandi (“The new art of notation”) in 1322; ushered in a new
age of medieval European music, known as the “Ars nova” style
Became Bishop of Meaux in 1351

Levi ben Gerson (1288–1344)
French rabbi, philosopher, mathematician, and scientist
Also known as Gersonides, Magister Leo Hebraeus, and RaLBaG
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What de Vitry noticed

Music and number theory
de Vitry called an integer “harmonic” if it was of the form 2a · 3b.
The numerators and denominators of the musical fractions (1/2, 2/3, 3/4,
8/9) are all harmonic numbers!
And the numerators and denominators differ by 1.

The numerators and denominators give solutions to

3x = 2y ± 1.
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De numeris harmonicis

de Vitry asked ben Gerson whether there were any other pairs of harmonic
numbers that differ by 1.

ben Gerson’s answer
ben Gerson wrote De numeris harmonicis (“On harmonic numbers”) in 1342.
Written in Hebrew. No contemporaneous Hebrew copies known to still exist.
14th century Latin translations do exist.
ben Gerson begins by saying that de Vitry asked him this question.
He shows that no other such pairs exist!

Remarkable when you consider that mathematicians did not yet use letters for
variables!
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What a 14th century manuscript looks like

First page of Gersonides’s proof, courtesy of the Bibliothèque national de France

A more legible paraphrase is given in:

Karine Chemla and Serge Pahaut,
Remarques sur les ouvrages
mathématiques de Gersonide,
pp. 149–191 in:

G. Freudenthal (ed.),
Studies on Gersonides —
A Fourteenth-Century Jewish
Philosopher-Scientist,
E. J. Brill, Leiden, 1992
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Five cases of ben Gerson’s proof
ben Gerson’s proof involves proving thirty (!) intermediate cases and results.

The critical results
26. 32n+1 − 1 is not a power of 2, unless n = 0, which gives 31 − 1 = 21.
27. 34n − 1 is not a power of 2.
28. 34n+2 − 1 is not a power of 2, unless n = 0, which gives 32 − 1 = 23.
29. 32n + 1 is not a power of 2, unless n = 0, which gives 30 + 1 = 21.
30. 32n+1 + 1 is not a power of 2, unless n = 0, which gives 31 + 1 = 22.

If you squint hard enough, he proves these by showing that:
26. 32n+1 − 1 ≡ 2 mod 4.
27. 34n − 1 ≡ 0 mod 5.
28. 34n+2 − 1 ≡ 8 mod 16.
29. 32n + 1 ≡ 2 mod 4.
30. 32n+1 + 1 ≡ 4 mod 8.
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The proof I saw in graduate school
Problem: Find all x and y with 3x ± 1 = 2y .

Case 1: x is odd
3x ≡ 3 mod 8, so left hand side is 2 or 4 mod 8.
Left hand side can’t be a power of 2 unless it is equal to 2 or 4.

Case 2: x is even and 3x + 1 = 2y

3x ≡ 1 mod 8, so left hand side is 2 mod 8.
Left hand side can’t be a power of 2 unless it is equal to 2.

Case 3: x is even and 3x − 1 = 2y

If x = 2z then 3x − 1 = 32z − 1 = (3z + 1)(3z − 1).
If this is a power of 2, then both factors are powers of 2.
The two factors differ by 2, so we must have 3z − 1 = 2.
This gives z = 1, so x = 2.
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The nicest proof I know

Let’s go to the blackboard. . .

Powers of 2 mod 80: 1 2 4 8 16

32
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48

// // // //

��

tt

\\

44

Powers of 3 mod 80: 1
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9
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New (?) topic: Powers of 3 in binary
n binary representation of 3n #bits #ones

1 11 2 2
2 1001 4 2
3 11011 5 4
4 1010001 7 3
5 11110011 8 6
6 1011011001 10 6
7 100010001011 12 5
8 1100110100001 13 6
9 100110011100011 15 8

10 1110011010101001 16 9
11 101011001111111011 18 13
12 10000001101111110001 20 10
13 110000101001111010011 21 11
14 10010001111101101111001 23 14
15 110110101111001001101011 24 15
16 10100100001101011101000001 26 11
17 111101100101000010111000011 27 14
18 10111000101111001000101001001 29 14
19 1000101010001101011001111011011 31 17
20 11001111110101000001101110010001 32 17
21 1001101111011111000101001010110011 34 20
22 11101001110011101001111100000011001 35 19
23 1010111101011010111101110100001001011 37 22
24 100000111000010000111001011100011100001 39 16
25 1100010101000110010101100010101010100011 40 18

What do you notice? What do you wonder?
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Conjectures inspired by observation
A perfectly reasonable conjecture suggested by this data:

Conjecture 1

The number of ones in the binary expansion of 3n is asymptotic to n · (log2 3)/2.

This seems far too difficult to prove by current methods. A weaker conjecture:

Conjecture 2

The number of ones in the binary expansion of 3n tends to infinity with n.

Equivalently:

Conjecture 3

For every positive b, there are only finitely many n such that 3n has exactly b ones
in its binary representation.
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Some conjectures are true!

Conjectures 2 and 3 are true:

Proof by H. G. Senge and E. G. Straus, 1970
Based on results about approximating algebraic numbers by rational numbers.
“Ineffective” — does not give information about how big an n can be if 3n has
only b bits equal to one.

Proof by Cameron Stewart, 1980
Based on Baker’s theorem about linear forms in logarithms.
“Effective” — the result does give bounds on how big n can be if 3n has only b
bits equal to one.
Impractical — the bounds are very, very large.
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Effective vs. practical

How big are the bounds?
Stewart gives a function S(b) so that if n ≥ S(b), then 3n has more than b bits
equal to one.
S is hard to calculate, but we can compute upper and lower bounds for it.
For example: S(3) > 5000; S(4) > 300,000; S(22) > 4.9 × 1046.

There’s no reason to think Stewart’s lower bound S(b) is the best lower bound.

The table of binary expansions of 3n a few slides ago showed that 3n has at most
22 bits equal to one when n ≤ 25.

Calculating further, when n > 25 we find that 3n always seems to have more than
22 bits equal to one.

Do we really have to check more than 4.9 × 1046 values of n to verify this?
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Better bounds for particular values of b

Recall Conjecture 3:
For every positive b, there are only finitely many n such that 3n has exactly b ones
in its binary representation.

Theorem 4 (Dimitrov/H.)

The powers of 3 with at most 22 ones in their binary representations are exactly
the powers of 3 in the table given earlier: 3n with n ≤ 25.

We don’t use difficult theorems. We only use modular arithmetic!
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Some more recent history
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Looking for a specific number of 1s

ben Gerson and beyond
ben Gerson [1342]: If 3n has two 1s in binary then n = 1 or n = 2.

Pillai [1945]: If 3n has three 1s in binary then n = 4.
Uses a complicated congruence argument.

Bennett, Bugeaud, and Mignotte [2011 and 2013]: If 3n has four 1s in binary
then n = 3.

Uses a powerful advanced tool: linear forms in logarithms.
Their result is much more general: If yn has four 1s in binary then n ≤ 4.
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Skip ahead to the case b = 6

In the early 2000s my coauthor wanted to show there are no solutions to

3n = 103 + 2x = 1 + 21 + 22 + 25 + 26 + 2x .

A special case of our question, for b = 6!

Advice from analytic number theorists
Use a theorem of W. J. Ellison from 1970.
Explicit version of a special case of a theorem of Pillai.
Used Baker’s method — linear forms in logarithms.
Ellison’s result: For x > 27 we have |3n − 2x | > (9/5)x .

If you need heavy machinery to solve the case b = 6 with five of the powers of 2
fixed, maybe the general case is even harder. . .
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Modular methods
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ben Gerson’s theorem via modular methods

Consider the argument we gave before for solving 3n = ±1 + 2x .

Modulo 80:
Powers of 2: 1, 2, 4, 8, 16, 32, 64, 48, 16, . . .
Powers of 3: 1, 3, 9, 27, 1, . . .
Only solutions modulo 80 are:
3 ≡ 1 + 2, 9 ≡ 1 + 8, 1 ≡ −1 + 2, 3 ≡ −1 + 4
Only powers of 2 that reduce modulo 80 to 2, 4, or 8 are 2, 4, and 8
themselves.
(Depends on 80 being divisible by 16.)
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Method of Leo J. Alex (early 1980s)

J. L. Brenner and Lorraine L. Foster write that Alex used “several small moduli” to
solve the case b = 3: 3n = 1 + 2x + 2y .

Can be done all at once. For example, take m = 2796160 = 27 · 5 · 17 · 257.

Modulo 2796160:
Powers of 2: (23 numbers)
Powers of 3: (256 numbers)
Sums of two powers of 2: (275 numbers)
Compare sums of two powers of 2 with powers of 3 minus 1.
Find three solutions: 3 ≡ 1 + 1 + 1, 9 ≡ 1 + 4 + 4, 81 ≡ 1 + 16 + 64.
For i < 7, the only power of 2 that reduces modulo m to 2i is 2i itself.
81 is the only power of 3 with 3 ones in its binary expansion.
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First attempt at an approach

1 Enumerate integer solutions to 3n =
∑b

i=1 2xi until you think you have them all.
2 Let 2x be the largest power of 2 appearing in any right-hand side.
3 Find a modulus m = 2y3zm0 with y > x such that

The multiplicative order of 2 in Z/m0Z is small.
The multiplicative order of 3 in Z/m0Z is small.

4 Enumerate solutions modulo m.
5 Hope: All solutions involve powers of 2 mod m that lift uniquely to the integers.
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Choosing the modulus

Questions
How do we find a good modulus m to try?
What do we do if the m we choose doesn’t work?
Computational reasons suggest building up m by throwing in more prime
factors. How to choose them?
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Example with b = 3 again

A few slides ago we solved 3n = 1 + 2x + 2y by looking modulo 27 · 5 · 17 · 257.

What if we had tried using m1 = 5440 = 26 · 5 · 17 instead?

Modulo 5440:
Powers of 2: (14 numbers)
Powers of 3: (16 numbers)
Sums of two powers of 2: (104 numbers)
Compare sums of two powers of 2 with powers of 3 minus 1.
Find three solutions: 3 = 1 + 1 + 1, 9 = 1 + 4 + 4, 81 = 1 + 16 + 64.
But now there are infinitely many y with 2y = 64 mod m1.
Let’s just throw in another factor of 2 in the modulus to avoid this problem. . .
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Extraneous solutions

Solutions modulo m2 = 2m1 = 27 · 5 · 17

31 ≡ 20 + 20 + 20 mod m2

32 ≡ 20 + 22 + 22 mod m2

34 ≡ 20 + 24 + 26 mod m2

Solutions modulo m3 = 41m2 = 27 · 5 · 17 · 41

31 ≡ 20 + 20 + 20 mod m3

32 ≡ 20 + 22 + 22 mod m3

34 ≡ 20 + 24 + 26 mod m3
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More extraneous solutions!

Solutions modulo m4 = 193m3 = 27 · 5 · 17 · 41 · 193

31 ≡ 20 + 20 + 20 mod m4

32 ≡ 20 + 22 + 22 mod m4

34 ≡ 20 + 24 + 26 mod m4

Questions
Why are we getting these extraneous solutions?
(We wouldn’t expect them by chance.)
Why did we not get extraneous solutions modulo m = 27 · 5 · 17 · 257?
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An unexpected condition

The multiplicative order of 3 modulo various m:

316 ≡ 1 mod 5 · 17

316 ≡ 1 mod 5 · 17 · 41

316 ≡ 1 mod 5 · 17 · 41 · 193

3256 ≡ 1 mod 5 · 17 · 257

The source of extraneous solutions
It turns out: The solution 34 = 1 + 24 + 26 leads to an additional extraneous
solution modulo m unless 26−1 = 32 divides the multiplicative order of 3 modulo m.
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Computational issues
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Our method: Very special moduli

We carefully chose a sequence of moduli m1, . . . ,m62, each dividing the next.

Final algorithm
Compute all solutions to 3n ≡ 2x1 + · · ·+ 2xb−1 + 2xb mod m1 by enumeration.
Repeat the following:

Given the set of solutions modulo mi , we consider each solution in turn.
For each solution, we lift the powers of 2 on the right-hand side from Z/miZ to Z/mi+1Z.
For each possible lifted right-hand side, we check: Is the sum is a power of 3 in Z/mi+1Z?
If so, we add the lifted solution to the list of solutions modulo mi+1.

If we have lifted solutions to a modulus mk , and if every power of 2 in every
solution lifts uniquely from Z/mkZ to the integers, we are done.
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Timings

Using this method, we solved the case b = 14 in under a minute on my previous
laptop, a 2.8 GHz Quad-Core Intel Core i7 Macbook Pro.

This is an exponential Diophantine equation involving 14 variables!

The case b = 19 took 5 hours on one core.

Details for the case n = 22
Took 207 core-hours, using four cores.
Our m was a 376-digit number built up from 56 prime factors.
There are 3,710,851,743,781 powers of 2 modulo m, with 37 on the tail.
There are more than 7.4 × 1045 powers of 3 modulo m.
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A related problem

A conjecture of Erdős:
If 2n has only 0’s and 1’s in its base-3 representation, then 2n = 1, 4, or 256.

Theorem 5 (Dimitrov/H.)
The only powers of 2 that can be written as the sum of twenty-one or fewer distinct
powers of 3 are:

20 = 30

22 = 30 + 31

28 = 30 + 31 + 32 + 35.

The computations for this are very similar to the ones already described.
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Related work

Skolem (1937)
Conjecture: If an exponential Diophantine equation has no solutions, there is an m
so that it has no solutions modulo m.

Alex, Brenner, and Foster (1980s)
Solved exponential Diophantine equations using congruences.
Limited computational resources compared to today.

Bertók and Hajdu (2010s)
Refined Skolem’s conjecture. Used modular approaches to solve exponential
Diophantine equations, but not as efficiently as using our method.

Largest example in their work: finding all powers of 17 that can be written a sum of
nine powers of 5.
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