Estimating the number of genus-2 curves over a finite field with split Jacobians (corrected slides) Jeffrey D. Achter¹ Everett W. Howe² ¹Colorado State University ²Center for Communications Research, La Jolla SIAM Conference on Applied Algebraic Geometry Fort Collins, 1–4 August 2013 ## Questions with nice answers #### Curves How many genus-2 curves are there over \mathbb{F}_q ? $$\sum_{ ext{genus-2 }C/\mathbb{F}_q} rac{1}{\#\operatorname{\mathsf{Aut}}C}=q^3.$$ (Brock/Granville, Finite Fields Appl., 2001) ## Principally-polarized abelian surfaces How many principally-polarized abelian surfaces (A, λ) are there over \mathbb{F}_q ? $$\sum_{(A,\lambda)/\mathbb{F}_q} rac{1}{\#\operatorname{Aut}(A,\lambda)} = q^3 + q^2.$$ # Why such nice answers? Curves and principally-polarized surfaces are parametrized by nice moduli splaces. What about objects *without* nice moduli spaces? For example... ## Curves with nonsimple Jacobians How many genus-2 curves C are there over \mathbb{F}_q such that Jac C is nonsimple? Likewise, we could ask about principally-polarized surfaces where the surface is not simple. ## Main result #### **Theorem** There exist positive constants c and d such that for all q, $$\#\{genus-2\ curves\ C/\mathbb{F}_q\ with\ \mathrm{Jac}\ C\ nonsimple\}$$ is at least $$\frac{c \, q^{5/2}}{(\log q)^5}$$ and at most $d \, q^{5/2} (\log q)^{10} (\log \log q)^2$. ## Informal interpretation A randomly chosen genus-2 curve C/\mathbb{F}_q has roughly one chance in \sqrt{q} of having nonsimple Jacobian. ## Does this make sense? Let's compare to the probability that an isogeny class is split. ## Isogeny classes The number of isogeny classes of abelian surfaces over \mathbb{F}_q , with $q = p^e$, is $$\sim \frac{32}{3} \frac{(p-1)}{p} \, q^{3/2}.$$ (DiPippo/Howe, J. Number Theory, 1998) ## Split isogeny classes The number of split isogeny class of abelian surfaces over \mathbb{F}_q , with $q=p^e$, is $$\sim 8 \, \frac{(p-1)^2}{p^2} \, q.$$ # Types of split surfaces ## Split surfaces can be isogenous to... - \bullet $E_1 \times E_2$, with E_1 and E_2 ordinary and nonisogenous - \bigcirc E^2 , with E ordinary - § $E_1 \times E_2$, with E_1 , E_2 nonisogenous, but at least one supersingular - E², with E supersingular ## How many of each type? - We will see... - **2** $O(q^2(\log q)^{...})$ - $O(q^2(\log q)^{\cdots})$, probably less - **9** $O(q^2)$... and there are this many when $q = p^2$ So the ordinary nonisogenous case is the critical one. #### Given: - Two elliptic curves E₁, E₂ over a field k - An isomorphism ψ: E₁[n] → E₂[n] for some n > 0, such that ψ is an anti-isometry with respect to the Weil pairing ## We will produce: #### Given: - Two elliptic curves E₁, E₂ over a field k - An isomorphism ψ: E₁[n] → E₂[n] for some n > 0, such that ψ is an anti-isometry with respect to the Weil pairing $$E_1[n] \times E_1[n] \xrightarrow{\text{Weil}} \mu_n$$ ## We will produce: #### Given: - Two elliptic curves E_1 , E_2 over a field k - An isomorphism ψ: E₁[n] → E₂[n] for some n > 0, such that ψ is an anti-isometry with respect to the Weil pairing $$E_1[n] \times E_1[n] \xrightarrow{\text{Weil}} \mu_n$$ $$E_2[n] \times E_2[n] \xrightarrow{\text{Weil}} \mu_n$$ ## We will produce: #### Given: - Two elliptic curves E₁, E₂ over a field k - An isomorphism ψ: E₁[n] → E₂[n] for some n > 0, such that ψ is an anti-isometry with respect to the Weil pairing $$E_1[n] imes E_1[n] ext{Weil} o \mu_n$$ $\psi imes \psi$ $E_2[n] imes E_2[n] ext{Weil} o \mu_n$ ## We will produce: #### Given: - Two elliptic curves E_1 , E_2 over a field k - An isomorphism ψ: E₁[n] → E₂[n] for some n > 0, such that ψ is an anti-isometry with respect to the Weil pairing $$E_1[n] imes E_1[n] \longrightarrow \mu_n$$ $\psi imes \psi$ $\downarrow \text{ inv.}$ $E_2[n] imes E_2[n] \longrightarrow \mu_n$ ## We will produce: - Graph $(\psi) \subset (E_1 \times E_2)[n]$, a maximal isotropic subgroup - $A = (E_1 \times E_2) / \operatorname{Graph}(\psi)$ - $\alpha : E_1 \times E_2 \to A$, the natural map - Graph $(\psi) \subset (E_1 \times E_2)[n]$, a maximal isotropic subgroup - $A = (E_1 \times E_2) / \operatorname{Graph}(\psi)$ - $\alpha : E_1 \times E_2 \to A$, the natural map $$E_1 \times E_2 \xrightarrow{\text{mult. by } n} \widehat{E_1} \times \widehat{E_2}$$ - Graph $(\psi) \subset (E_1 \times E_2)[n]$, a maximal isotropic subgroup - $A = (E_1 \times E_2) / \operatorname{Graph}(\psi)$ - $\alpha : E_1 \times E_2 \to A$, the natural map - Graph $(\psi) \subset (E_1 \times E_2)[n]$, a maximal isotropic subgroup - $A = (E_1 \times E_2) / \operatorname{Graph}(\psi)$ - $\alpha : E_1 \times E_2 \to A$, the natural map - Graph $(\psi) \subset (E_1 \times E_2)[n]$, a maximal isotropic subgroup - $A = (E_1 \times E_2) / \operatorname{Graph}(\psi)$ - $\alpha : E_1 \times E_2 \to A$, the natural map - Graph $(\psi) \subset (E_1 \times E_2)[n]$, a maximal isotropic subgroup - $A = (E_1 \times E_2) / \operatorname{Graph}(\psi)$ - $\alpha : E_1 \times E_2 \to A$, the natural map ## An old story #### **Theorem** - Every genus-2 curve C with non-simple Jacobian arises in this manner, perhaps in several ways. - If Jac C is nonsimple but is not isogenous to E^2 , then the E_1 , E_2 , n, and ψ giving C are unique up to $$(E_1, E_2, n, \psi) \mapsto (E_2, E_1, n, \psi^{-1}).$$ This is close to work of Kani, J. Reine Angew. Math. (1997). But the results go back at least to Kowalevski's dissertation (1874, published in *Acta Math.* in 1884), using unpublished result of Weierstrass (her advisor). Also, independenly, to Picard, Bull. Math. Soc. France (1883). # Rephrasing the question #### Don't count curves... Instead, count quadruples (E_1, E_2, n, ψ) , where - E_1 and E_2 are nonisogenous elliptic curves over \mathbb{F}_q - n > 1 is an integer - $\psi \colon E_1[n] \to E_2[n]$ is an anti-isometry Note that the existence of an isomorphism $E_1[n] \to E_2[n]$ implies that trace $E_1 \equiv \text{trace } E_2 \mod n$. Thus, for a given E_1 and E_2 , only certain n are possible. # How not to prove the theorem ## A reasonable strategy? - We claim there are $\sim q^{5/2}$ curves with nonsimple Jacobian. - There are $\sim q^2$ pairs (E_1, E_2) . - Should we try to show that each (E₁, E₂) gives about q^{1/2} curves? This won't work: Consider $$\limsup_{q\to\infty} \max_{E_1,E_2/\mathbb{F}_q} \frac{\log\#\{\text{Jac }C\text{ coming from }E_1,E_2\}}{\log q}.$$ Can prove this is equal to 3/4. # Why some pairs of elliptic curves produce many C Given E_1 and E_2 , let's count anti-isometries $E_1[\ell] \to E_2[\ell]$. For there to be *any* anti-isometries, the Galois modules $E_1[\ell]$ and $E_2[\ell]$ must be isomorphic. Say the characteristic polynomials of Frobenius on these modules are both $f = x^2 - tx + q \in \mathbb{F}_{\ell}[x]$. In that case... ...the number of anti-isometries $E_1[\ell] \to E_2[\ell]$ is: ``` \begin{cases} \ell+1 & \text{if } f \text{ is irreducible,} \\ \ell-1 & \text{if } f \text{ has two distinct roots in } \mathbb{F}_{\ell}, \\ \ell^3-\ell & \text{if disc } f=0 \text{ and Frobenius acts as an integer,} \\ 0 \text{ or } 2\ell & \text{if disc } f=0 \text{ and Frobenius does not act as an} \end{cases} ``` if disc f = 0 and Frobenius does not act as an integer. ## The relative conductor Suppose the Frobenius π acts as an integer t on $E[\ell]$. Then $(\pi - t)/\ell$ is an endomorphism of E, So ℓ divides the index [End $E : \mathbb{Z}[\pi]$]. We define the *relative conductor* of E/\mathbb{F}_q to be rcond $$E = [End E : \mathbb{Z}[\pi]].$$ #### **Theorem** The number of anti-isometries $E_1[n] \rightarrow E_2[n]$ is at most $$2^{\nu(n)}\psi(n)(\operatorname{rcond} E_1)(\operatorname{rcond} E_2),$$ where $$\nu(n) = \#\{p \mid n\} \text{ and } \psi(n) = n \prod_{p \mid n} (1 + 1/p).$$ ## Strata #### Definition A *stratum* (for a quadratic order R) is the set of all elliptic curves over \mathbb{F}_q having endomorphism ring R. We can get rid of the annoying $2^{\nu(n)}$ by summing over strata. #### **Theorem** Let S_1 and S_2 be two nonisogenous strata. The sum of the number of anti-isometries $E_1[n] \to E_2[n]$ for all $E_1 \in S_1$ and $E_2 \in S_2$ is bounded by $\#S_1 \#S_2 \psi(n) (\text{rcond } S_1) (\text{rcond } S_2).$ # Summing over n... Summing over all *n* dividing the difference of the traces gives: #### **Theorem** There exists a constant c such that for all nonisogenous strata S_1 and S_2 , the number of Jac C coming from all $E_1 \in S_1$ and $E_2 \in S_2$ is at most $c \# S_1 \# S_2 (\text{rcond } S_1) (\text{rcond } S_2) q^{1/2} (\log \log q)^2$. # Summing over strata... The total number of *C* coming from ordinary nonisogenous elliptic curves is at most: $$egin{aligned} c \ q^{1/2} (\log \log q)^2 \sum_{S_1,S_2} \# S_1 \ \# S_2 \ (\operatorname{rcond} S_1) (\operatorname{rcond} S_2) \ & \leq (c/2) q^{1/2} (\log \log q)^2 \Big(\sum_S \# S \cdot \operatorname{rcond} S \Big)^2 \ & = (c/2) q^{1/2} (\log \log q)^2 \Big(\sum_E \operatorname{rcond} E \Big)^2. \end{aligned}$$ Our goal is to give an upper bound of the form $$d q^{5/2} (\log q)^{10} (\log \log q)^2$$. ## The sum of the relative conductors So our main result follows from: #### **Theorem** There is a constant c such that for all q, $$\sum_{\mathit{ordinary}\, E/\mathbb{F}_q} \mathsf{rcond}\, E < c\, q\, (\log q)^5.$$ ## Why is this reasonable? - roond E can only be as large as the conductor of $\mathbb{Z}[\pi]$. - ullet On average, the rings $\mathbb{Z}[\pi]$ have small conductor. - Even when $\mathbb{Z}[\pi]$ has large conductor, relative few curves in the isogeny class have large relative conductor. ## Some data We can estimate probability that a random genus-2 curve over \mathbb{F}_q has split Jacobian by sampling. For q= 101, probability is c/\sqrt{q} , with c= 0.796 \pm 0.009. For q=1009, probability is c/\sqrt{q} , with $c=0.80\pm0.05$. Perhaps suggests true probability is c/\sqrt{q} , with no log powers? # **Application** Fix a genus-2 C over \mathbb{Q} . Consider $$f(x) = \#\{p < x \text{ such that } C/\mathbb{F}_p \text{ has split Jacobian}\}.$$ If the suggestion on preceding slide is correct, we expect f(x) to grow like $\sqrt{x}/\log x$. This agrees well with tests on $C: y^2 = x^5 + x + 6$.