Higher-order Carmichael numbers

Everett W. Howe

Center for Communications Research, La Jolla

Colorado State University Mathematics Colloquium 6 December 2006

Part I. Carmichael numbers

Fermat's little theorem

Fermat's little theorem (1640)

If p is prime, then for all a we have $a^p \equiv a \mod p$.

Definition

A Carmichael number is a composite integer n such that $a^n \equiv a \mod n$ for all a.

Carmichael numbers exist; the converse of Fermat's theorem is false.

Example (Carmichael, 1910)

Let $n = 561 = 3 \cdot 11 \cdot 17$. We have $0^n \equiv 0 \mod n$ and $1^n \equiv 1 \mod n$. Also,

$$2^{1} \equiv 2$$
 $2^{8} \equiv 256$ $2^{34} \equiv 412$ $2^{140} \equiv 67$ $2^{2} \equiv 4$ $2^{16} \equiv 460$ $2^{35} \equiv 263$ $2^{280} \equiv 1$ $2^{4} \equiv 16$ $2^{17} \equiv 359$ $2^{70} \equiv 166$ $2^{560} \equiv 1$

So $2^{561} \equiv 2 \mod n$.

Repeat with $3, 4, 5, \dots$

A better way to check for Carmichael numbers

Korselt's criterion (1899)

A composite number n is a Carmichael number if and only if

- 1 n is squarefree, and
- ② for all primes $p \mid n$ we have $n \equiv 1 \mod (p-1)$.

Example

Again consider $n = 561 = 3 \cdot 11 \cdot 17$. We have

 $561 \equiv 1 \mod 2$

 $561 \equiv 1 \bmod 10$

 $561 \equiv 1 \mod 16$

so Korselt's criterion shows that *n* is Carmichael.

Primality tests

Won't say much about primality tests here. But recall our verification that $2^n \equiv 2 \mod n$ for n = 561:

$$2^{1} \equiv 2$$
 $2^{8} \equiv 256$ $2^{34} \equiv 412$ $2^{140} \equiv 67$ $2^{2} \equiv 4$ $2^{16} \equiv 460$ $2^{35} \equiv 263$ $2^{280} \equiv 1$ $2^{4} \equiv 16$ $2^{17} \equiv 359$ $2^{70} \equiv 166$ $2^{560} \equiv 1$

Note that

$$67^2 \equiv 1 \mod n$$
 but $67 \not\equiv \pm 1 \mod n$.

This shows that n is not prime.

Under the Generalized Riemann Hypothesis, tests like this lead to a polynomial-time algorithm to distinguish composites from primes. (Faster than AKS algorithm, which doesn't need GRH.)

Three questions

- Do Carmichael numbers exist? (Yes.)
- 4 How can one find or construct them quickly?
- How many Carmichael numbers are there?

A simple construction

Theorem (Chernick, 1939)

Suppose k is an integer such that 6k + 1, 12k + 1, and 18k + 1 are all prime. Then n = (6k + 1)(12k + 1)(18k + 1) is a Carmichael number.

Proof.

Note that

$$n-1=36k(36k^2+11k+1),$$

and that p-1 divides 36k for each prime divisor p of n.

With k = 1, we find that $1729 = 7 \cdot 13 \cdot 19$ is Carmichael.

Remark

A proof of the prime 3-tuple conjecture would thus show that there are infinitely many Carmichael numbers.

Erdős's construction of Carmichael numbers (1956)

Given an integer L, define sets

$$P(L) = \left\{ p \mid p \text{ is prime, } p \nmid L, \text{ and } (p-1) \mid L \right\}$$

$$C(L) = \left\{ n \mid \text{n is squarefree and composite,} \\ \text{all primes dividing } n \text{ lie in } P(L), \\ \text{and } L \mid (n-1). \right\}$$

Claim: Every $n \in C(L)$ is Carmicael.

Proof.

```
If p \mid n then (p-1) \mid L.
Since L \mid (n-1), we have (p-1) \mid (n-1).
That is, n \equiv 1 \mod (p-1).
```

How many Carmichael numbers from a given L?

```
P(L) = \{ \text{primes } p \text{ coprime to } L \text{ with } (p-1) \mid L \}
C(L) = \{ \text{squarefree composite } n \equiv 1 \text{ mod } L \text{ built from primes in } P(L) \}
```

Heuristics

- About $2^{\#P(L)}$ squarefree composite n built from $p \in P(L)$.
- "Each such *n* has $1/\varphi(L)$ chance of being 1 modulo *L*."
- So we expect $\#C(L) \approx 2^{\#P(L)}/\varphi(L)$.

Goal: Find L with #P(L) very large.

Alford (circa 1990)

Found an L for which he could show that

$$\#C(L) \ge 2^{\text{very big exponent}}$$
.

Shame your colleagues to success!

Denote by c(x) the number of Carmichael numbers less than x.

Theorem (Alford, Granville, Pomerance 1992)

When $x \gg 0$, we have $c(x) \ge x^{2/7}$.

Harman (2005) has improved the exponent to just under 1/3.

But what do we expect to be true?

Erdős (1956): Heuristic argument predicting that for every $\varepsilon>0$, we have

$$c(x) > x^{1-\varepsilon}$$
 when $x \gg 0$.

A more precise heuristic

Heuristic (Pomerance, Selfridge, Wagstaff 1980)

For every $\varepsilon > 0$, when $x \gg 0$ we have

$$c(x) > xe^{(-2+\varepsilon)\frac{\log x \log \log \log x}{\log \log x}}.$$

Define a function k(x) by requiring that

$$c(x) = xe^{-k(x)\frac{\log x \log \log x}{\log \log x}}.$$

Pomerance, Selfridge, and Wagstaff prove that

$$\liminf k(x) \ge 1$$

and conjecture that

$$\limsup k(x) \leq 2.$$

Evidence?

Pinch's computations

n	<i>k</i> (10 ^{<i>n</i>})	n	<i>k</i> (10 ^{<i>n</i>})	n	<i>k</i> (10 ^{<i>n</i>})
3	2.93319	9	1.87989	15	1.86301
4	2.19547	10	1.86870	16	1.86406
5	2.07632	11	1.86421	17	1.86472
6	1.97946	12	1.86377	18	1.86522
7	1.93388	13	1.86240	19	1.86565
8	1.90495	14	1.86293	20	1.86598

Part II. Higher-order Carmichael numbers

Primes vs. Carmichaels

Convention: All rings are commutative, with identity.

Fact #1

An integer n is prime if and only if $x \mapsto x^n$ is an endomorphism of every $(\mathbb{Z}/n\mathbb{Z})$ -algebra.

(For 'if' direction, consider the polynomial ring $(\mathbb{Z}/n\mathbb{Z})[x]$.)

Fact #2

A composite integer n is Carmichael if and only if $x \mapsto x^n$ is an endomorphism of $(\mathbb{Z}/n\mathbb{Z})$.

Carmichael numbers of order m

Let m > 0 be an integer.

Definition

A composite integer n is a Carmichael number of order m if $x \mapsto x^n$ gives an endomorphism of every $(\mathbb{Z}/n\mathbb{Z})$ -algebra that can be generated as a $(\mathbb{Z}/n\mathbb{Z})$ -module by m elements.

Theorem

A composite n is a Carmichael number of order m if and only if

- on is squarefree, and
- ② for all primes $p \mid n$ and for all positive integers $r \leq m$, there is an integer i such that $n \equiv p^i \mod (p^r 1)$.

Example

Take

$$n = 443372888629441$$

= 17 \cdot 31 \cdot 41 \cdot 43 \cdot 89 \cdot 97 \cdot 167 \cdot 331.

Then for all $p \mid n$ we have

$$n \equiv 1 \mod (p-1)$$

 $n \equiv 1 \mod (p^2-1)$

so *n* is a Carmichael number of order 2.

This is the only example less than 10¹⁶. (There are 246683 Carmichael numbers less than 10¹⁶.)

Proof of ⇒ direction

- 1 n is squarefree, and
- 2 for all primes $p \mid n$ and for all $r \leq m$, there is an i such that $n \equiv p^i \mod (p^r 1)$.

Suppose n is a Carmichael number of order m.

Proof of (1)

Only endomorphism of $\mathbb{Z}/n\mathbb{Z}$ is the identity, so $a^n \equiv a \mod n$. Suppose $p \mid n$. Then $p = (p, n) = (p^n, n)$, so $p^2 \nmid n$.

Proof of (2)

Given p and r, consider \mathbb{F}_{p^r} . Note $\mathbb{Z}/n\mathbb{Z} \to \mathbb{F}_p \to \mathbb{F}_{p^r}$. Endomorphisms of \mathbb{F}_{p^r} are powers of Frobenius, so for some i we have $x^n = x^{p^i}$ for all $x \in \mathbb{F}_{p^r}$. Since $\mathbb{F}_{p^r}^*$ is cyclic of order $p^r - 1$, item (2) follows.

- 1 n is squarefree, and
- ② for all primes $p \mid n$ and for all $r \leq m$, there is an i such that $n \equiv p^i \mod (p^r 1)$.

For the other implication, we need a lemma.

Lemma

If (1) and (2), then $\forall s$ with $1 \leq s \leq m$ we have $\binom{n}{s} \equiv 0 \mod n$. That is, if $q \mid n$ then q > m.

Proof.

Suppose there's a $q \mid n$ with $q \leq m$. Choose $p \mid n$ with $p \neq q$. Apply (2) with r = q - 1 to get

$$n \equiv p^i \bmod (p^{q-1} - 1).$$

- 1 n is squarefree, and
- ② for all primes $p \mid n$ and for all $r \leq m$, there is an i such that $n \equiv p^i \mod (p^r 1)$.

For the other implication, we need a lemma.

Lemma

If (1) and (2), then $\forall s$ with $1 \leq s \leq m$ we have $\binom{n}{s} \equiv 0 \mod n$. That is, if $q \mid n$ then q > m.

Proof.

Suppose there's a $q \mid n$ with $q \leq m$. Choose $p \mid n$ with $p \neq q$. Apply (2) with r = q - 1 to get

$$n \equiv p^i \mod q$$
.

- 1 n is squarefree, and
- ② for all primes $p \mid n$ and for all $r \leq m$, there is an i such that $n \equiv p^i \mod (p^r 1)$.

For the other implication, we need a lemma.

Lemma

If (1) and (2), then $\forall s$ with $1 \leq s \leq m$ we have $\binom{n}{s} \equiv 0 \mod n$. That is, if $q \mid n$ then q > m.

Proof.

Suppose there's a $q \mid n$ with $q \leq m$. Choose $p \mid n$ with $p \neq q$. Apply (2) with r = q - 1 to get

$$0 \equiv p^i \mod q$$

- 1 n is squarefree, and
- ② for all primes $p \mid n$ and for all $r \leq m$, there is an i such that $n \equiv p^i \mod (p^r 1)$.

For the other implication, we need a lemma.

Lemma

If (1) and (2), then $\forall s$ with $1 \leq s \leq m$ we have $\binom{n}{s} \equiv 0 \mod n$. That is, if $q \mid n$ then q > m.

Proof.

Suppose there's a $q \mid n$ with $q \leq m$. Choose $p \mid n$ with $p \neq q$. Apply (2) with r = q - 1 to get

$$0 \equiv p^i \bmod q,$$

contradiction.

Proof of ← direction

- 1 n is squarefree, and
- 2 for all primes $p \mid n$ and for all $r \leq m$, there is an i such that $n \equiv p^i \mod (p^r 1)$.

Suppose (1) and (2) hold. Suppose R is a $(\mathbb{Z}/n\mathbb{Z})$ -algebra generated as a module by m elements. Then

$$R \cong R_1 \times R_2 \times \cdots \times R_t$$
 with each R_i local and gen'd by m elts.

If $x \mapsto x^n$ is endomorphism of each R_i , then it's an endomorphism of R.

Suffices to consider case where *R* is local.

Proof of ← direction, continued

- 1 n is squarefree, and
- 2 for all primes $p \mid n$ and for all $r \leq m$, there is an i such that $n \equiv p^i \mod (p^r 1)$.

Suppose (1) and (2) hold, and R is a local $(\mathbb{Z}/n\mathbb{Z})$ -algebra generated as a module by m elements.

Let p be the maximal ideal of R, and k = R/p the residue field.

We know $\mathfrak{p}^m = (0)$ and $[k : \mathbb{F}_p] \leq m$.

Since *n* is squarefree, $\mathbb{F}_p \subseteq R$.

Hensel: Can embed $k \hookrightarrow R$ so that $k \hookrightarrow R \xrightarrow{\text{red}} k$ is identity.

Proof of ← direction, concluded

R is a local ring containing residue field $k = R/\mathfrak{p}$. We have $\mathfrak{p}^m = (0)$ and $[k : \mathbb{F}_p] \le m$. To show: $x \mapsto x^n$ is an endomorphism of R.

Given $x \in R$, we may write x = a + z with $a \in k$ and $z \in \mathfrak{p}$.

$$x^n = \sum_{s=0}^n \binom{n}{s} a^{n-s} z^s = a^n + \sum_{s=1}^n \binom{n}{s} a^{n-s} z^s.$$

But $\binom{n}{s} = 0$ if $1 \le s \le m$ and $z^s = 0$ if $s \ge m$, so $x^n = a^n$.

So $x \mapsto x^n$ in R is the composition of

- reduction $R \rightarrow k$ $x \mapsto a$
- automorphism $k \to k$ $a \mapsto a^{p^i} = a^n$
- inclusion $k \to R$ $a^n \mapsto a^n$

Variant of Erdős's construction

Given *m* and *L*, define sets

$$P(m, L) = \left\{ p \mid \begin{array}{l} p \text{ is prime, } p \nmid L, \text{ and for all} \\ \text{positive } r \leq m \text{ we have } (p^r - 1) \mid L. \end{array} \right\}$$

$$C(m, L) = \left\{ \begin{array}{l} n \text{ is squarefree and composite,} \\ \text{all primes dividing } n \text{ lie in } P(m, L), \\ \text{and } L \mid (n - 1). \end{array} \right\}$$

Suppose $n \in C(m, L)$ and $p \mid n$.

For all $r \leq m$ we have $(p^r - 1) \mid L$ and $L \mid (n - 1)$, so

$$n \equiv 1 = p^0 \bmod (p^r - 1).$$

So every $n \in C(m, L)$ is a Carmichael number of order m.

Example

$$P(m, L) = \{ \text{primes } p \text{ coprime to } L \text{ with } (p^r - 1) \mid L \text{ for all } r \leq m \}$$
 $C(m, L) = \{ \text{squarefree composite } n \equiv 1 \text{ mod } L \text{ built from primes in } P(m, L) \}$

With m = 2, take $L = 2^7 \cdot 3^3 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 29$.

Then #P(m,L)=45, and we expect about $2^{45}/\varphi(L)\approx 263$ elements in C(m,L).

In fact, #C(m, L) = 246.

Example

The smallest element of C(m, L) is 59.67.71.79.89.101.113.191.233.239.307.349.379.911.2089.5279.

How to compute C(m, L)

```
P(m,L) = \{ \text{primes } p \text{ coprime to } L \text{ with } (p^r - 1) \mid L \text{ for all } r \leq m \}
C(m,L) = \{ \text{squarefree composite } n \equiv 1 \mod L \text{ built from primes in } P(m,L) \}
```

In the preceding example, #P(2, L) = 45. Don't enumerate 2^{45} integers to find ones that are 1 modulo L!

A 'meet-in-the-middle' approach

- Write $P(2, L) = P \cup Q$ with #P = 23 and #Q = 22.
- Calculate
 X = {(a mod L) : a squarefree, built from primes in P}.
- Calculate $Y = \{(b \mod L)^{-1} : b \text{ squarefree, built from primes in } Q\}.$
- Calculate $X \cap Y$.
- If $(a \mod L) = (b \mod L)^{-1}$ then $ab \equiv 1 \mod L$ and ab is squarefree, built from primes in P(2, L).

Open questions and problems

Heuristic (à la Erdős): For every m, there should be infinitely many Carmichael numbers of order m.

Open problems

- Are there infinitely many Carmichael numbers of order 2?
- What are the first 3 Carmichael numbers of order 2?
- Give an example of a Carmichael number of order 3.