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Part I.
Carmichael numbers
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Fermat’s little theorem

Fermat’s little theorem (1640)
If p is prime, then for all a we have a° = a mod p.

Definition
A Carmichael number is a composite integer n such that
a" = amod n for all a.

Carmichael numbers exist; the converse of Fermat’s theorem is
false.
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Example (Carmichael, 1910)

Letn=561=3-11.17.
We have 0”7 = 0 mod nand 1”7 = 1 mod n. Also,

ol —» 28 = 256 234 =412 2140 — g7
22 =14 216 = 460 2% =263 2280 — 4
24 =16 217 = 359 270 = 166 2560 _ {

So 2561 = 2 mod n.

Repeat with 3,4,5, ...
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A better way to check for Carmichael numbers

Korselt’s criterion (1899)

A composite number n is a Carmichael number if and only if
@ nis squarefree, and
Q for all primes p | nwe have n=1mod (p — 1).

Example
Again consider n =561 =3-11-17. We have

561 =1 mod 2
561 =1 mod 10
561 =1 mod 16

so Korselt’s criterion shows that nis Carmichael.
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Primality tests

Won't say much about primality tests here. But recall our
verification that 2”7 = 2 mod n for n = 561:

2l =2 28 = 256 234 =412 2140 = g7

22 =4 2'° = 460 2% =263 2280 = 1

24 =16 217 = 359 270 = 166 2560 — 4
Note that

672=1mod n but 67 % +1 mod n.
This shows that nis not prime.

Under the Generalized Riemann Hypothesis, tests like this lead
to a polynomial-time algorithm to distinguish composites from
primes. (Faster than AKS algorithm, which doesn’'t need GRH.)
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Three questions

@ Do Carmichael numbers exist? (Yes.)
© How can one find or construct them quickly?
© How many Carmichael numbers are there?
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A simple construction

Theorem (Chernick, 1939)

Suppose k is an integer such that 6k + 1, 12k + 1, and 18k + 1
are all prime. Thenn = (6k +1)(12k +1)(18k + 1) isa
Carmichael number.

Proof.

Note that
n—1=236k(36k?+ 11k + 1),

and that p — 1 divides 36k for each prime divisor p of n. O

With k = 1, we find that 1729 = 7 - 13 - 19 is Carmichael.

Remark

A proof of the prime 3-tuple conjecture would thus show that
there are infinitely many Carmichael numbers.
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Erdds’s construction of Carmichael numbers (1956)

Given an integer L, define sets

P(L)={p| pisprime,ptL,and (p—1)| L}
nis squarefree and composite,

C(L) = < n | all primes dividing n lie in P(L),
and L|(n—1).

Claim: Every n € C(L) is Carmicael.

Proof.

If p| nthen (p—1) | L.

Since L|(n—1),wehave (p—1)|(n—1).

Thatis, n=1mod (p —1). O
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How many Carmichael numbers from a given L?

P(L) = {primes p coprime to L with (p — 1) | L}
C(L) = {squarefree composite n = 1 mod L built from primes in P(L)}

Heuristics
@ About 2#P(L) squarefree composite n built from p € P(L).
@ “Each such nhas 1/¢(L) chance of being 1 modulo L.
@ So we expect #C(L) ~ 2#P(L) /x(L).

Goal: Find L with #P(L) very large.

Alford (circa 1990)
Found an L for which he could show that

#C(L) > 2v&Y big exponent
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Shame your colleagues to success!

Denote by c(x) the number of Carmichael numbers less than x.

Theorem (Alford, Granville, Pomerance 1992)
When x > 0, we have c(x) > x?/7. J

Harman (2005) has improved the exponent to just under 1/3.

But what do we expect to be true?

Erdds (1956): Heuristic argument predicting that for every
e > 0, we have

c(x)>x'"* when x> 0.
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A more precise heuristic

Heuristic (Pomerance, Selfridge, Wagstaff 1980)
For every £ > 0, when x > 0 we have

(_2+€) log x log log log x

c(x) > xe foglog x

Define a function k(x) by requiring that

log x log log log x
—k(x) Tog log x

c(x) = xe
Pomerance, Selfridge, and Wagstaff prove that
liminfk(x) > 1
and conjecture that

limsup k(x) < 2.
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Evidence?

Pinch’s computations
In] k(o) | n| k(o) | n| k(0" |
2.93319 | 9| 1.87989 | 15 | 1.86301
2.19547 || 10 | 1.86870 || 16 | 1.86406
2.07632 || 11 | 1.86421 || 17 | 1.86472
1.97946 | 12 | 1.86377 | 18 | 1.86522
1.93388 || 13 | 1.86240 | 19 | 1.86565
1.90495 | 14 | 1.86293 | 20 | 1.86598

O N[O O~ WS
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Part Il.
Higher-order Carmichael numbers
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Primes vs. Carmichaels

Convention: All rings are commutative, with identity.

Fact #1
An integer nis prime if and only if
x — x" is an endomorphism of every (Z/nZ)-algebra.

(For ‘if’ direction, consider the polynomial ring (Z/nZ)|x].)

Fact #2

A composite integer n is Carmichael if and only if
x — x"is an endomorphism of (Z/nZ).
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Carmichael numbers of order m

Let m > 0 be an integer.

Definition

A composite integer nis a Carmichael number of order m if
x — x" gives an endomorphism of every (Z/nZ)-algebra that
can be generated as a (Z/nZ)-module by m elements.

Theorem
A composite n is a Carmichael number of order m if and only if
@ nis squarefree, and

@ for all primes p | n and for all positive integers r < m, there
is an integer i such thatn = p' mod (p" — 1).
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Take
n = 443372888629441
=17-31-41.43-89-97-167 - 331.
Then for all p | nwe have

n=1mod(p—1)
n=1mod (p* — 1)
so nis a Carmichael number of order 2.

This is the only example less than 106,
(There are 246683 Carmichael numbers less than 10'6.)
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Proof of = direction

@ nis squarefree, and
Q for all primes p | nand for all r < m, there is an i such that n = p/ mod (p” — 1).

v

Suppose nis a Carmichael number of order m.

Proof of (1)

Only endomorphism of Z/nZ is the identity, so 8" = a mod n.
Suppose p | n. Then p = (p, n) = (p", n), so p? 1 n.

Proof of (2)
Given p and r, consider Fyr. Note Z/nZ — Fp — Fpr.
Endomorphisms of F,r are powers of Frobenius, so for some i

we have x" = xP for all x € Fp.
Since F, is cyclic of order p” — 1, item (2) follows.
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A lemma

@ nis squarefree, and
9 for all primes p | nand for all r < m, there is an i such that n = p/ mod (p" — 1).

For the other implication, we need a lemma.

Lemma

If (1) and (2), then Vs with1 < s < m we have () = 0 mod n.
That is, ifq | n then g > m.

Proof.

Suppose there’s a g | n with g < m. Choose p | n with p # g.
Apply (2) with r = g — 1 to get

n=p mod (p?~ ! —1).
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A lemma

@ nis squarefree, and
9 for all primes p | nand for all r < m, there is an i such that n = p/ mod (p" — 1).

For the other implication, we need a lemma.

Lemma

If (1) and (2), then Vs with1 < s < m we have () = 0 mod n.
That is, ifq | n then g > m.

Proof.

Suppose there’s a g | n with g < m. Choose p | n with p # g.
Apply (2) with r = g — 1 to get

n=p modq.
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A lemma

@ nis squarefree, and
9 for all primes p | nand for all r < m, there is an i such that n = p/ mod (p" — 1).

For the other implication, we need a lemma.

Lemma

If (1) and (2), then Vs with1 < s < m we have () = 0 mod n.
That is, ifq | n then g > m.

Proof.

Suppose there’s a g | n with g < m. Choose p | n with p # g.
Apply (2) with r = g — 1 to get

0=p' modg,
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A lemma

@ nis squarefree, and
9 for all primes p | nand for all r < m, there is an i such that n = p/ mod (p" — 1).

For the other implication, we need a lemma.

Lemma

If (1) and (2), then Vs with1 < s < m we have () = 0 mod n.
Thatis, ifq | ntheng > m.

Proof.

Suppose there’s a q | n with g < m. Choose p | n with p # gq.
Apply (2) with r = g — 1 to get

0=p' modg,

contradiction. O
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Proof of « direction

@ nis squarefree, and
© forall primes p | nand for all r < m, there is an i such that n = p’ mod (p" — 1).

Suppose (1) and (2) hold.
Suppose R is a (Z/nZ)-algebra generated as a module by m
elements. Then

R2RyxRyx--- xRy
with each R; local and gen’d by m elts.

If x — x" is endomorphism of each R;, then it's an
endomorphism of R.

Suffices to consider case where Ris local. |
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Proof of < direction, continued

@ nis squarefree, and J

e for all primes p | nand for all r < m, there is an i such that n = p/ mod (p" — 1).

Suppose (1) and (2) hold, and R is a local (Z/nZ)-algebra
generated as a module by m elements.

Let p be the maximal ideal of R, and k = R/p the residue field.
We know p™ = (0) and [k : Fp] < m.

Since n is squarefree, F, C R.

Hensel: Can embed k < R so that k — R "% k is identity.
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Proof of < direction, concluded

R is alocal ring containing residue field k = R/p. We have p™ = (0) and [k : Fp] < m.
To show: x — x" is an endomorphism of R. J

Given x € R, we may write x = a+ zwithae kand z € p.

n

n

n n

n n—s._s n n—s.s

X = g a z>=a + g a zZ".
s=0 <S> s=1 <S>

But (7) =0if1 <s<mandz®=0if s> m,sox"=a".

So x — x"in R is the composition of

@ reduction R— k X— a
@ automorphism k — k a—a’ =a"
@ inclusion k— R a'— a".
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Variant of Erdos’s construction

Given m and L, define sets

P(m, L) = {p p islprime, pt L, and for all }
positive r < mwe have (p" — 1) | L.

nis squarefree and composite,

C(m, L) = ¢ n | all primes dividing n lie in P(m, L),

and L|(n—1).

Suppose ne€ C(m,L) and p | n.

Forallr < mwehave (p" —1)|Land L|(n—1),so

n=1=p’mod (p" - 1).

So every n € C(m, L) is a Carmichael number of order m.
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P(m, L) = {primes p coprime to L with (p" — 1) | Lfor all r < m}
C(m, L) = {squarefree composite n = 1 mod L built from primes in P(m, L)} J

With m =2, take L=27-.3%.52.7-11.13-17-19.29.

Then #P(m, L) = 45, and we expect about 24° /(L) ~ 263
elements in C(m, L).

In fact, #C(m, L) = 246.

The smallest element of C(m, L) is

Example
59.67-71-79-89-101-113-191-233-239-307-349-379-911 -2089~5279.J
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How to compute C(m, L)

P(m, L) = {primes p coprime to L with (p" — 1) | L for all r < m}
C(m, L) = {squarefree composite n = 1 mod L built from primes in P(m, L)} J

In the preceding example, #P(2, L) = 45.
Don’t enumerate 24° integers to find ones that are 1 modulo L!

A ‘meet-in-the-middle’ approach
@ Write P(2,L) = PU Q with #P = 23 and #Q = 22.
@ Calculate
X ={(amod L) : a squarefree, built from primes in P}.
@ Calculate
Y = {(bmod L)~ : b squarefree, built from primes in Q}.
@ Calculate XN'Y.

@ If (amod L) = (bmod L)~" then ab= 1 mod L and ab is
squarefree, built from primes in P(2, L).

Everett W. Howe Higher-order Carmichael numbers



Open questions and problems

Heuristic (a la Erd6s): For every m, there should be infinitely
many Carmichael numbers of order m.
Open problems
@ Are there infinitely many Carmichael numbers of order 2?
@ What are the first 3 Carmichael numbers of order 2?
© Give an example of a Carmichael number of order 3.

Everett W. Howe Higher-order Carmichael numbers



