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Part I.
Carmichael numbers
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Fermat’s little theorem

Fermat’s little theorem (1640)
If p is prime, then for all a we have ap ≡ a mod p.

Definition
A Carmichael number is a composite integer n such that
an ≡ a mod n for all a.

Carmichael numbers exist; the converse of Fermat’s theorem is
false.
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Example (Carmichael, 1910)

Let n = 561 = 3 · 11 · 17.
We have 0n ≡ 0 mod n and 1n ≡ 1 mod n. Also,

21 ≡ 2

22 ≡ 4

24 ≡ 16

28 ≡ 256

216 ≡ 460

217 ≡ 359

234 ≡ 412

235 ≡ 263

270 ≡ 166

2140 ≡ 67

2280 ≡ 1

2560 ≡ 1

So 2561 ≡ 2 mod n.

Repeat with 3, 4, 5, . . .
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A better way to check for Carmichael numbers

Korselt’s criterion (1899)
A composite number n is a Carmichael number if and only if

1 n is squarefree, and
2 for all primes p | n we have n ≡ 1 mod (p − 1).

Example
Again consider n = 561 = 3 · 11 · 17. We have

561 ≡ 1 mod 2
561 ≡ 1 mod 10
561 ≡ 1 mod 16

so Korselt’s criterion shows that n is Carmichael.
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Primality tests

Won’t say much about primality tests here. But recall our
verification that 2n ≡ 2 mod n for n = 561:

21 ≡ 2

22 ≡ 4

24 ≡ 16

28 ≡ 256

216 ≡ 460

217 ≡ 359

234 ≡ 412

235 ≡ 263

270 ≡ 166

2140 ≡ 67

2280 ≡ 1

2560 ≡ 1

Note that

672 ≡ 1 mod n but 67 6≡ ±1 mod n.

This shows that n is not prime.

Under the Generalized Riemann Hypothesis, tests like this lead
to a polynomial-time algorithm to distinguish composites from
primes. (Faster than AKS algorithm, which doesn’t need GRH.)
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Three questions

1 Do Carmichael numbers exist? (Yes.)
2 How can one find or construct them quickly?
3 How many Carmichael numbers are there?
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A simple construction

Theorem (Chernick, 1939)
Suppose k is an integer such that 6k + 1, 12k + 1, and 18k + 1
are all prime. Then n = (6k + 1)(12k + 1)(18k + 1) is a
Carmichael number.

Proof.
Note that

n − 1 = 36k(36k2 + 11k + 1),

and that p − 1 divides 36k for each prime divisor p of n.

With k = 1, we find that 1729 = 7 · 13 · 19 is Carmichael.

Remark
A proof of the prime 3-tuple conjecture would thus show that
there are infinitely many Carmichael numbers.
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Erdős’s construction of Carmichael numbers (1956)

Given an integer L, define sets

P(L) =
{

p
∣∣ p is prime, p - L, and (p − 1) | L

}
C(L) =

n

∣∣∣∣∣∣∣
n is squarefree and composite,
all primes dividing n lie in P(L),
and L | (n − 1).


Claim: Every n ∈ C(L) is Carmicael.

Proof.
If p | n then (p − 1) | L.
Since L | (n − 1), we have (p − 1) | (n − 1).
That is, n ≡ 1 mod (p − 1).
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How many Carmichael numbers from a given L?

P(L) = {primes p coprime to L with (p − 1) | L}
C(L) = {squarefree composite n ≡ 1 mod L built from primes in P(L)}

Heuristics
About 2#P(L) squarefree composite n built from p ∈ P(L).
“Each such n has 1/ϕ(L) chance of being 1 modulo L.”
So we expect #C(L) ≈ 2#P(L)/ϕ(L).

Goal: Find L with #P(L) very large.

Alford (circa 1990)
Found an L for which he could show that

#C(L) ≥ 2very big exponent.
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Shame your colleagues to success!

Denote by c(x) the number of Carmichael numbers less than x .

Theorem (Alford, Granville, Pomerance 1992)

When x � 0, we have c(x) ≥ x2/7.

Harman (2005) has improved the exponent to just under 1/3.

But what do we expect to be true?
Erdős (1956): Heuristic argument predicting that for every
ε > 0, we have

c(x) > x1−ε when x � 0.
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A more precise heuristic

Heuristic (Pomerance, Selfridge, Wagstaff 1980)
For every ε > 0, when x � 0 we have

c(x) > xe(−2+ε) log x log log log x
log log x .

Define a function k(x) by requiring that

c(x) = xe−k(x) log x log log log x
log log x .

Pomerance, Selfridge, and Wagstaff prove that

lim inf k(x) ≥ 1

and conjecture that

lim sup k(x) ≤ 2.
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Evidence?

Pinch’s computations

n k(10n) n k(10n) n k(10n)

3 2.93319 9 1.87989 15 1.86301

4 2.19547 10 1.86870 16 1.86406

5 2.07632 11 1.86421 17 1.86472

6 1.97946 12 1.86377 18 1.86522

7 1.93388 13 1.86240 19 1.86565

8 1.90495 14 1.86293 20 1.86598
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Part II.
Higher-order Carmichael numbers
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Primes vs. Carmichaels

Convention: All rings are commutative, with identity.

Fact #1
An integer n is prime if and only if

x 7→ xn is an endomorphism of every (Z/nZ)-algebra.

(For ‘if’ direction, consider the polynomial ring (Z/nZ)[x ].)

Fact #2
A composite integer n is Carmichael if and only if

x 7→ xn is an endomorphism of (Z/nZ).
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Carmichael numbers of order m

Let m > 0 be an integer.

Definition
A composite integer n is a Carmichael number of order m if
x 7→ xn gives an endomorphism of every (Z/nZ)-algebra that
can be generated as a (Z/nZ)-module by m elements.

Theorem
A composite n is a Carmichael number of order m if and only if

1 n is squarefree, and
2 for all primes p | n and for all positive integers r ≤ m, there

is an integer i such that n ≡ pi mod (pr − 1).
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Example

Take

n = 443372888629441
= 17 · 31 · 41 · 43 · 89 · 97 · 167 · 331.

Then for all p | n we have

n ≡ 1 mod (p − 1)

n ≡ 1 mod (p2 − 1)

so n is a Carmichael number of order 2.

This is the only example less than 1016.
(There are 246683 Carmichael numbers less than 1016.)
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Proof of =⇒ direction

1 n is squarefree, and
2 for all primes p | n and for all r ≤ m, there is an i such that n ≡ pi mod (pr − 1).

Suppose n is a Carmichael number of order m.

Proof of (1)
Only endomorphism of Z/nZ is the identity, so an ≡ a mod n.
Suppose p | n. Then p = (p, n) = (pn, n), so p2 - n.

Proof of (2)
Given p and r , consider Fpr . Note Z/nZ → Fp → Fpr .
Endomorphisms of Fpr are powers of Frobenius, so for some i
we have xn = xpi

for all x ∈ Fpr .
Since F∗pr is cyclic of order pr − 1, item (2) follows.
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A lemma

1 n is squarefree, and
2 for all primes p | n and for all r ≤ m, there is an i such that n ≡ pi mod (pr − 1).

For the other implication, we need a lemma.

Lemma
If (1) and (2), then ∀s with 1 ≤ s ≤ m we have

(n
s

)
≡ 0 mod n.

That is, if q | n then q > m.

Proof.
Suppose there’s a q | n with q ≤ m. Choose p | n with p 6= q.
Apply (2) with r = q − 1 to get

n ≡ pi mod (pq−1 − 1).
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A lemma

1 n is squarefree, and
2 for all primes p | n and for all r ≤ m, there is an i such that n ≡ pi mod (pr − 1).

For the other implication, we need a lemma.

Lemma
If (1) and (2), then ∀s with 1 ≤ s ≤ m we have

(n
s

)
≡ 0 mod n.

That is, if q | n then q > m.

Proof.
Suppose there’s a q | n with q ≤ m. Choose p | n with p 6= q.
Apply (2) with r = q − 1 to get

n ≡ pi mod q.
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A lemma

1 n is squarefree, and
2 for all primes p | n and for all r ≤ m, there is an i such that n ≡ pi mod (pr − 1).

For the other implication, we need a lemma.

Lemma
If (1) and (2), then ∀s with 1 ≤ s ≤ m we have

(n
s

)
≡ 0 mod n.

That is, if q | n then q > m.

Proof.
Suppose there’s a q | n with q ≤ m. Choose p | n with p 6= q.
Apply (2) with r = q − 1 to get

0 ≡ pi mod q,
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A lemma

1 n is squarefree, and
2 for all primes p | n and for all r ≤ m, there is an i such that n ≡ pi mod (pr − 1).

For the other implication, we need a lemma.

Lemma
If (1) and (2), then ∀s with 1 ≤ s ≤ m we have

(n
s

)
≡ 0 mod n.

That is, if q | n then q > m.

Proof.
Suppose there’s a q | n with q ≤ m. Choose p | n with p 6= q.
Apply (2) with r = q − 1 to get

0 ≡ pi mod q,

contradiction.
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Proof of ⇐= direction

1 n is squarefree, and
2 for all primes p | n and for all r ≤ m, there is an i such that n ≡ pi mod (pr − 1).

Suppose (1) and (2) hold.
Suppose R is a (Z/nZ)-algebra generated as a module by m
elements. Then

R ∼= R1 × R2 × · · · × Rt

with each Ri local and gen’d by m elts.

If x 7→ xn is endomorphism of each Ri , then it’s an
endomorphism of R.

Suffices to consider case where R is local.
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Proof of ⇐= direction, continued

1 n is squarefree, and
2 for all primes p | n and for all r ≤ m, there is an i such that n ≡ pi mod (pr − 1).

Suppose (1) and (2) hold, and R is a local (Z/nZ)-algebra
generated as a module by m elements.

Let p be the maximal ideal of R, and k = R/p the residue field.

We know pm = (0) and [k : Fp] ≤ m.

Since n is squarefree, Fp ⊆ R.

Hensel: Can embed k ↪→ R so that k ↪→ R red−→ k is identity.
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Proof of ⇐= direction, concluded

R is a local ring containing residue field k = R/p. We have pm = (0) and [k : Fp] ≤ m.
To show: x 7→ xn is an endomorphism of R.

Given x ∈ R, we may write x = a + z with a ∈ k and z ∈ p.

xn =
n∑

s=0

(
n
s

)
an−szs = an +

n∑
s=1

(
n
s

)
an−szs.

But
(n

s

)
= 0 if 1 ≤ s ≤ m and zs = 0 if s ≥ m, so xn = an.

So x 7→ xn in R is the composition of
reduction R → k x 7→ a
automorphism k → k a 7→ api

= an

inclusion k → R an 7→ an.
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Variant of Erdős’s construction

Given m and L, define sets

P(m, L) =

{
p

∣∣∣∣ p is prime, p - L, and for all
positive r ≤ m we have (pr − 1) | L.

}

C(m, L) =

n

∣∣∣∣∣∣∣
n is squarefree and composite,
all primes dividing n lie in P(m, L),
and L | (n − 1).


Suppose n ∈ C(m, L) and p | n.

For all r ≤ m we have (pr − 1) | L and L | (n − 1), so

n ≡ 1 = p0 mod (pr − 1).

So every n ∈ C(m, L) is a Carmichael number of order m.
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Example

P(m, L) = {primes p coprime to L with (pr − 1) | L for all r ≤ m}
C(m, L) = {squarefree composite n ≡ 1 mod L built from primes in P(m, L)}

With m = 2, take L = 27 · 33 · 52 · 7 · 11 · 13 · 17 · 19 · 29.

Then #P(m, L) = 45, and we expect about 245/ϕ(L) ≈ 263
elements in C(m, L).

In fact, #C(m, L) = 246.

Example
The smallest element of C(m, L) is
59·67·71·79·89·101·113·191·233·239·307·349·379·911·2089·5279.
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How to compute C(m, L)

P(m, L) = {primes p coprime to L with (pr − 1) | L for all r ≤ m}
C(m, L) = {squarefree composite n ≡ 1 mod L built from primes in P(m, L)}

In the preceding example, #P(2, L) = 45.
Don’t enumerate 245 integers to find ones that are 1 modulo L!

A ‘meet-in-the-middle’ approach
Write P(2, L) = P ∪Q with #P = 23 and #Q = 22.
Calculate
X = {(a mod L) : a squarefree, built from primes in P}.
Calculate
Y = {(b mod L)−1 : b squarefree, built from primes in Q}.
Calculate X ∩ Y .
If (a mod L) = (b mod L)−1 then ab ≡ 1 mod L and ab is
squarefree, built from primes in P(2, L).
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Open questions and problems

Heuristic (à la Erdős): For every m, there should be infinitely
many Carmichael numbers of order m.

Open problems
1 Are there infinitely many Carmichael numbers of order 2?
2 What are the first 3 Carmichael numbers of order 2?
3 Give an example of a Carmichael number of order 3.
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