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Motivation

Two topics of interest
Genus-2 curves with maps to elliptic curves
Genus-2 curves with Jacobians isogenous to a product of
elliptic curves

These are really the same topic. . .
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A construction

Given:
Two elliptic curves E1, E2 over a field k
An isomorphism ψ : E1[n] → E2[n] for some n > 0, such
that ψ is an anti-isometry with respect to the Weil pairing

We will produce:
A genus-2 curve C (possibly degenerate)
Degree-n maps C → E1 and C → E2
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Completing a diagram

We have:
Graph(ψ) ⊂ (E1 × E2)[n], a maximal isotropic subgroup
A = (E1 × E2)/Graph(ψ)

α : E1 × E2 → A, the natural map
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This gives degree-n map ϕ1 : C → E1. Get ϕ2 similarly.
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An old story

Theorem
Every degree-n map C → E1 that does not factor through an
isogeny arises in this manner.
The associated E2 and ψ : E1[n] → E2[n] are unique up to
isomorphism.

Theorem
Every genus-2 curve with non-simple Jacobian arises in this
manner, perhaps in several ways.

These results are old. What I just presented is close to what
appears in Kani, J. Reine Angew. Math. (1997), which is based
on Frey/Kani, in Arithmetic Algebraic Geometry (1991).
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An older story

Frey and Kani note:
They can’t find this construction explicitly in literature, but it
‘seems to be known in principle’. They cite:

Serre, Sem. Théorie Nombres Bordeaux (1982/82)
Ibukiyama/Katsura/Oort, Compositio Math. (1986)

But if we allow for a change in perspective, it’s older than that.
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An even older story

Kowalevski’s dissertation, written 1874
Published in Acta Math. (1884).
Mentions unpublished result of Weierstrass (her advisor):

Wenn aus einer Function ϑ(v1, . . . , vρ|τ11, . . . , τρρ) durch
irgend eine Transformation k ten Grades eine andere
hervorgeht, die ein Produkt aus einer ϑ-Funktion von
(ρ− 1) Veränderlichen und einer elliptischen ist, so kann
der ersprüngliche Funktion stets durch eine lineare
Transformation (bei der k = 1 ist) in eine andere
ϑ(v ′

1, . . . , v
′
ρ|τ11, . . . , τρρ) verwandelt werden, in der

τ12 =
µ

k
, τ13 = 0, . . . , τ1ρ = 0

ist, wo µ einer der Zahlen 1,2, . . . , k − 1 bedeutet.
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An even older story, continued

Similar result, discovered independently by Picard
Published in Bull. Math. Soc. France (1883).

S’il existe une intégrale de premièr espèce correspondant à
la relation algébrique

y2 = x(1− x)(1− k2x)(1− l2x)(1−m2x)

qui ait seulement deux périodes, on pourra trouver un
système d’intégrales normales, dont le tableau des
périodes sera

0 1 G
1
D

1 0
1
D

G′

où D désigne un entier réel et positif.
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A question of perspective

The result of Frey and Kani shows that degree-n covers of
elliptic curves, and “n-gluings” of two elliptic curves, are
essentially the same thing.

In the 19th century, there was more interest in the former.

But I think 19th-century mathematicians would have recognized
Frey and Kani’s result.
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Explicit examples of genus-2 covers

Legendre’s special ultra-elliptic integrals (1828)

Traité des fonctions elliptiques, 3ième supplement, §12
Shows that several integrals involving the expression√

x(1− x2)(1− k2x2)

can be evaluated in terms of elliptic integrals.
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Explicit examples of genus-2 covers

Jacobi’s review of Legendre’s book
J. Reine Angew. Math. (1832)
Generalizes Legendre’s example to integrals involving√

x(1− x)(1− λx)(1− µx)(1− λµx)
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Jacobi’s family is complete

Königsberger (J. Reine Angew Math (1867)) and Picard (Bull.
Soc. Math. France (1883)) show:

Theorem
Every genus-2 curve over C with a degree-2 map to an elliptic
curve occurs in Jacobi’s family.
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More memorable version of Jacobi’s family over C

Suppose we want to glue together the curves

E1 : y2 = x(x − 1)(x − λ)

E2 : y2 = x(x − 1)(x − µ)

using the isomorphism E1[2] → E2[2] that sends (0,0) to (0,0)
and (1,0) and (1,0).

The resulting genus-2 curve:

y2 =
(

x2 − 1
) (

x2 − λ

µ

) (
x2 − λ− 1

µ− 1

)
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Two-gluing over non-algebraically closed fields:

Howe/Leprévost/Poonen, Forum Math. (2000):

Given two elliptic curves:

y2 = f = (x − α1)(x − α2)(x − α3)

y2 = g = (x − β1)(x − β2)(x − β3)

Set αij = αi − αj and βij = βi − βj , and define

A = disc(g)
(
α2

32
β32

+
α2

21
β21

+
α2

13
β13

) /
(α1β32 + α2β13 + α3β21)

B = disc(f )
(
β2

32
α32

+
β2

21
α21

+
β2

13
α13

) /
(β1α32 + β2α13 + β3α21)

Gluing gives the genus-2 curve

y2 = −(Aα21α13x2 + Bβ21β13) · (Aα32α21x2 + Bβ32β21)
· (Aα13α32x2 + Bβ13β32)
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Alternative view of 2-gluing formulas over arbitrary K

To a quadruple (t ,b, c,d) ∈ K 4 with dt 6= 0 and

4b3d − b2c2 − 18bcd + 4c3 + 27d2 6= 0

associate curves

Ct ,b,c,d : ty2 = x6 + bx4 + cx2 + d

Et ,b,c,d ,1 : ty2 = x3 + bx2 + cx + d

Et ,b,c,d ,2 : ty2 = dx3 + cx2 + bx + 1

Obvious degree-2 maps Ct ,b,c,d → Et ,b,c,d ,1 and C → Et ,b,c,d ,2.

Theorem
Every pair of double covers C → E1 and C → E2 over K occurs
in this family, and the quadruple (t ,b, c,d) is unique up to
scaling

(t ,b, c,d) 7→ (λ6µ2t , λ2b, λ4c, λ6d)
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Similar framework for degree-3 maps

Howe/Lauter/Stevenhagen, draft preprint (2011):

Notation:
To every quintuple (a,b, c,d , t) ∈ K 5 such that

12ac + 16bd = 1, a3 + b2 6= 0, c3 + d2 6= 0, t 6= 0

set ∆1 := a3 + b2 and ∆2 := c3 + d2.

Define curves Ca,b,c,d ,t , Ea,b,c,d ,t ,1, Ea,b,c,d ,t ,2:

ty2 = (x3 + 3ax + 2b)(2dx3 + 3cx2 + 1)

ty2 = x3 + 12(2a2d − bc)x2 + 12(16ad2 + 3c2)∆1x + 512∆2
1d3

ty2 = x3 + 12(2bc2 − ad)x2 + 12(16b2c + 3a2)∆2x + 512∆2
2b3
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The maps

Define rational functions:

u1 = 12∆1
−2dx + c

x3 + 3ax + 2b
v1 = ∆1

16dx3 − 12cx2 − 1
(x3 + 3ax + 2b)2

u2 = 12∆2
x2(ax − 2b)

2dx3 + 3cx2 + 1
v2 = ∆2

x3 + 12ax − 16b
(2dx3 + 3cx2 + 1)2

Simple verification:
(x , y) 7→ (ui , yvi) gives a degree-3 map

ϕa,b,c,d ,t ,i : Ca,b,c,d ,t → Ea,b,c,d ,t ,i .
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General formulas for 3-gluings

Theorem (Howe/Lauter/Stevenhagen)
Given two degree-3 maps

ϕ1 : C → E1 ϕ2 : C → E2

with ϕ2∗ϕ
∗
1 = 0, there exists a quintuple (a,b, c,d , t) whose

associated triple covers are isomorphic to ϕ1 and ϕ2.

The quintuple (a,b, c,d , t) is unique up to scaling:

(a,b, c,d , t) 7→ (λ2a, λ3b, λ−2c, λ−3d , λµ2t).
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Earlier work on explicit formulas for triple covers

Hermite: Ann. Soc. Sci. Bruxelles Sér. I (1876)
Works over C
Only gives 1-dimensional family

Goursat: Bull. Soc. Math. France (1885)
Works over C

Kuhn: Trans. Amer. Math. Soc. (1988)
Doesn’t give all curves and maps
Breaks into cases: ‘generic’ and ‘special’

Shaska: Forum Math. (2004) (inter alia)
Works over algebraically closed field
Gives formulas. . . with typographical errors
Breaks into cases: ‘non-degenerate’ and ‘degenerate’
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What we needed

Lauter, Stevenhagen, and I wanted a result that. . .
works over finite fields
does not involve special cases

We used Kuhn and Shaska’s work, and tidied up.
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The special cases

Ramification in a triple cover ϕ : C → E
Two possibilities:

Two points P and P ′, sharing same x-coordinate, each with
ramification index 2; the points Q and Q′ with ϕ(Q) = ϕ(P)
and ϕ(Q′) = ϕ(P ′) also have same x-coordinate.
One ramification point P, with index 3. The point P must be
a Weierstrass point.

The first case degenerates to the second as x(P) → x(Q).
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Renormalizing

Kuhn and Shaska
Normalize first case so that x(P) = 0 and x(Q) = ∞.

Formulas cannot possibly degenerate well.
Lose symmetry between E1 and E2.

We normalized so that x(P1) = 0 and x(P2) = ∞.
Formulas degenerate well, and regain E1 ↔ E2 symmetry.
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Everything old is new again

Our curve:

ty2 = (x3 + 3ax + 2b)(2dx3 + 3cx2 + 1)

where 12ac + 16bd = 1.

Goursat’s curve:

y2 = (x3 + ax + b)(x3 + px2 + q)

where q = 4b + (4/3)ap.

So Goursat’s family only misses case d = 0.
Up to symmetry, only misses case b = d = 0.
That’s just one curve!
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Application 1: Building a genus-2 curve with N points

Basic idea in Howe/Lauter/Stevenhagen:
Given N, use Bröker/Stevenhagen Contemp. Math. (2008):
Find an elliptic curve E1/Fp with N points, for some p.
Find a supersingular curve E2/Fp.
Glue them together along n-torsion for some n.
Resulting curve has N points.

Problem:
Must have E1[n] ∼= E2[n] as Galois modules . . .
So Trace(E1) ≡ Trace(E2) mod n . . ..
So n divides N − p − 1.
Can’t take n = 2 if N is odd.
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Higher-order gluings to the rescue!

If N 6≡ 1 mod 3:
The Bröker/Stevenhagen algorithm can produce E1/Fp having
N points, and with p ≡ N − 1 mod 3.

End result:
If N 6≡ 1 mod 6, we can use 2- or 3-gluings to produce a
genus-2 curve with N points.

This was our motivation for finding nice formulas for 3-gluing.
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Application 2: Jacobians over Q with large torsion

Howe/Leprévost/Poonen, Forum Math. (2000)
Choose elliptic curves E1, E2 over Q such that

E1 and E2 have large rational torsion subgroups;
E1[2] and E2[2] are isomorphic Galois modules.

Glue E1 and E2 along 2-torsion, get a genus-2 curve C.
Jac C has large rational torsion:

Odd part is same as E1 × E2.
Even part is generally smaller.
With effort, can choose E1 and E2 so that even part does
not shrink too much.

Obtained many torsion groups, including Z/63Z.
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What about using 3-gluing?

New strategy
Choose elliptic curves E1, E2 over Q such that

E1 and E2 have large rational torsion subgroups;
There is a Galois-equivariant anti-isometry E1[3] → E2[3].

Glue E1 and E2 along 3-torsion, get a genus-2 curve C.
Jac C has large rational torsion:

Non-3 part is same as E1 × E2.
3-part is generally smaller.
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Choosing the elliptic curves

Implementation
Make a list of low-height elliptic curves with large torsion.
Find E1, E2 having an anti-isometry E1[3] → E2[3].

Checking for an anti-isometry
Do 3-division polynomials define isomorphic Q-algebras?
If so, apply 3-gluing formulas and see if you get anything!

Disadvantage: Will get isolated examples, not families.
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Examples of new torsion groups obtained so far. . .

Torsion group Z/36Z
Glue an elliptic curve with Z/9Z to one with Z/12Z.
Found two examples.

Torsion group Z/56Z
Glue an elliptic curve with Z/7Z to one with Z/8Z.
Found one example.

Torsion group Z/70Z
Glue an elliptic curve with Z/7Z to one with Z/10Z.
Found one example, giving a new record torsion point order!

y2 = 4x6 − 36x5 − 35x4 + 390x3 + 1237x2 + 924x + 4356
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