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Two topics of interest
@ Genus-2 curves with maps to elliptic curves

@ Genus-2 curves with Jacobians isogenous to a product of
elliptic curves

These are really the same topic. ..
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A construction

Given:
@ Two elliptic curves E;, E, over a field k

@ Anisomorphism ¢ : E{[n] — E[n] for some n > 0, such
that ¢ is an anti-isometry with respect to the Weil pairing

We will produce:
@ A genus-2 curve C (possibly degenerate)
@ Degree-nmaps C — E; and C — E5
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Completing a diagram

We have:
@ Graph(y) C (Ey x Ez)[n], a maximal isotropic subgroup
@ A= (Ey x Ep)/Graph(¢)
@ «a: E;y x E; — A, the natural map
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Completing a diagram

We have:
@ Graph(y) C (Ey x Ez)[n], a maximal isotropic subgroup
@ A= (Ey x Ep)/Graph(¢)
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Completing a diagram

We have:

@ Graph(y) C (Ey x Ez)[n], a maximal isotropic subgroup

@ A= (Ey x Ep)/Graph(¢)
@ «a: E;y x E; — A, the natural map

mult. by n —

Es mult. by deg ¢ E Es
© o* @
C JacC Jac C
_ J

This gives degree-n map ¢1: C — Ey. Get ¢, similarly.
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An old story

Theorem

Every degree-n map C — E; that does not factor through an
isogeny arises in this manner.

The associated E; and v : Eq[n] — Ex[n] are unique up to
isomorphism.

Theorem

Every genus-2 curve with non-simple Jacobian arises in this
manner, perhaps in several ways.

These results are old. What | just presented is close to what
appears in Kani, J. Reine Angew. Math. (1997), which is based
on Frey/Kani, in Arithmetic Algebraic Geometry (1991).
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An older story

Frey and Kani note:

They can't find this construction explicitly in literature, but it
‘seems to be known in principle’. They cite:

@ Serre, Sem. Théorie Nombres Bordeaux (1982/82)
@ |bukiyama/Katsura/Oort, Compositio Math. (1986)

But if we allow for a change in perspective, it's older than that.

Everett W. Howe Three-gluings of elliptic curves



An even older story

Kowalevski’s dissertation, written 1874

@ Published in Acta Math. (1884).

@ Mentions unpublished result of Weierstrass (her advisor):
Wenn aus einer Function 9(v4, ..., V,|71,...,7,,) durch
irgend eine Transformation k" Grades eine andere
hervorgeht, die ein Produkt aus einer }-Funktion von
(p — 1) Veranderlichen und einer elliptischen ist, so kann
der erspriingliche Funktion stets durch eine lineare
Transformation (bei der k = 1 ist) in eine andere

I(Vq, .., Vy|T11, ..., Tpp) verwandelt werden, in der
Ti2 = %,?13 =0,...,71,=0
ist, wo p einer der Zahlen 1,2, ... k — 1 bedeutet.
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An even older story, continued

Similar result, discovered independently by Picard

@ Published in Bull. Math. Soc. France (1883).

S’il existe une intégrale de premier espece correspondant a
la relation algébrique

y2 =x(1 = x)(1 = k2x)(1 = Px)(1 — mPx)

qui ait seulement deux périodes, on pourra trouver un
systeme d’intégrales normales, dont le tableau des
périodes sera

0 1

Q ol—

G
1
105

ou D désigne un entier réel et positif.
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A question of perspective

The result of Frey and Kani shows that degree-n covers of
elliptic curves, and “n-gluings” of two elliptic curves, are
essentially the same thing.

In the 19th century, there was more interest in the former.

But | think 19th-century mathematicians would have recognized
Frey and Kani’s result.
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Explicit examples of genus-2 covers

Legendre’s special ultra-elliptic integrals (1828)

o Traité des fonctions elliptiques, 3™ supplement, §12
@ Shows that several integrals involving the expression

Vx( = x2)(1 - k2x2)

can be evaluated in terms of elliptic integrals.
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Explicit examples of genus-2 covers

Jacobi’s review of Legendre’s book
@ J. Reine Angew. Math. (1832)
@ Generalizes Legendre’s example to integrals involving

V(1 = x)(1 = x)(1 — ux)(1 — Aux)
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Jacobi’s family is complete

Konigsberger (J. Reine Angew Math (1867)) and Picard (Bull.
Soc. Math. France (1883)) show:

Every genus-2 curve over C with a degree-2 map to an elliptic

Theorem
curve occurs in Jacobi’s family. J
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More memorable version of Jacobi’s family over C

Suppose we want to glue together the curves
Ei: y2=x(x—1)(x-)\)

Er: y2=x(x—1)(x—u)

using the isomorphism E;[2] — E;[2] that sends (0, 0) to (0, 0)
and (1,0) and (1,0).

The resulting genus-2 curve:

o)D) -
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Two-gluing over non-algebraically closed fields:

Howe/Leprévost/Poonen, Forum Math. (2000):
Given two elliptic curves:
y? =f=(x—a1)(x — az)(x — as)
y? =g = (x—B1)(X — B2)(x — B3)

Set aj = a; — oj and g3 = 3; — G;, and define

A = disc(g) (Z:j + 621 + 32 ) /(041532 + apB13 + azf1)

2
B = disc(f) (@ - ﬁ”) /(ﬁ1 agz + P21z + B3021)

Q32 Q21 13

Gluing gives the genus-2 curve

¥? = —(Aagia13x? + BB21313) - (Aaspani X2 + BBspfa1)
- (Aayzagax? + BB13faz)
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Alternative view of 2-gluing formulas over arbitrary K

To a quadruple (t, b, ¢, d) € K* with dt # 0 and
4b3d — b?c?® — 18bcd + 4¢® +27d% # 0

associate curves

Cibed : W= xP+bx*+ox®+d

Etbca1: l‘y2 = x>+bx°+cx +d

Etpedz: ty?=adx®+cx®+bx +1
Obvious degree-2 maps Cipcd — Etpca1and C — Eipcao-

Theorem

Every pair of double covers C — E; and C — E, over K occurs
in this family, and the quadruple (t, b, ¢, d) is unique up to
scaling

(t,b, c,d) — (X8u2t, A%b, M ¢, A80)
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Similar framework for degree-3 maps

Howe/Lauter/Stevenhagen, draft preprint (2011):

Notation:
To every quintuple (a, b, ¢, d, t) € K® such that

12ac+16bd =1, a®+b>#0, c>+d?#£0,

set Ay :=a® + b and A, := ¢ + d°.

t£0

Define curves Capcat, Eabedi1, Eapcat2:
ty? = (x® + 3ax + 2b)(2dx® + 3cx® + 1)

ty? = x3 + 12(2a2d — bc)x? + 12(16ad? + 3¢2) A x + 5124208
ty? = x3 + 12(2bc? — ad)x? + 12(16b%¢ + 3a2) Apx + 512A2b3

Everett W. Howe Three-gluings of elliptic curves
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Define rational functions:

U — oA, 2dx+cC o 16ax® — 12¢cx2 — 1

' ' X3+ 3ax + 2b "7 73 4 3ax + 2b)2
2( oy 3 _

Us = 124, x“(ax — 2b) e x° +12ax — 16b

20dx3 + 3cx? + 1 T T2 (20x3 +3cx2 £ 1)2

v

Simple verification:
(x,y) — (uj, yv;) gives a degree-3 map

Vab.cdti:Cabecdt — Eapbedti-
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General formulas for 3-gluings

Theorem (Howe/Lauter/Stevenhagen)
Given two degree-3 maps

01:C— E4 02:C — Ep

with 2,03 = 0, there exists a quintuple (a, b, ¢, d, t) whose
associated triple covers are isomorphic to o1 and .

The quintuple (a, b, ¢, d, t) is unique up to scaling:

(a,b,c,d,t) — (Xa,X3b, \"%c, \=3d, A\pit).
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Earlier work on explicit formulas for triple covers

@ Hermite: Ann. Soc. Sci. Bruxelles Sér. |(1876)
e Works over C
@ Only gives 1-dimensional family

@ Goursat: Bull. Soc. Math. France (1885)
e Works over C

@ Kuhn: Trans. Amer. Math. Soc. (1988)

e Doesn't give all curves and maps

e Breaks into cases: ‘generic’ and ‘special’
@ Shaska: Forum Math. (2004) (inter alia)

e Works over algebraically closed field
o Gives formulas. .. with typographical errors
e Breaks into cases: ‘non-degenerate’ and ‘degenerate’
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What we needed

Lauter, Stevenhagen, and | wanted a result that. ..
@ works over finite fields
@ does not involve special cases

We used Kuhn and Shaska’s work, and tidied up.
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The special cases

Ramification in a triple cover ¢: C — E
Two possibilities:
@ Two points P and P’, sharing same x-coordinate, each with

ramification index 2; the points Q and Q' with p(Q) = ¢(P)
and (@) = ¢(P') also have same x-coordinate.

@ One ramification point P, with index 3. The point P must be
a Weierstrass point.

v

The first case degenerates to the second as x(P) — x(Q).
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Renormalizing

Kuhn and Shaska

Normalize first case so that x(P) = 0 and x(Q) = oc.
@ Formulas cannot possibly degenerate well.
@ Lose symmetry between E; and Eo.

We normalized so that x(Py) = 0 and x(Pz) = oc.
Formulas degenerate well, and regain Ey < E> symmetry.
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Everything old is new again

Our curve:

ty? = (x® + 3ax + 2b)(2dx> + 3cx® + 1)
where 12ac + 16bd = 1.

Goursat’s curve:

y2 = (x®+ax + b)(x® + px® + q)
where q = 4b + (4/3)ap.

So Goursat’s family only misses case d = 0.
Up to symmetry, only misses case b= d = 0.
That’s just one curve!
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Application 1: Building a genus-2 curve with N points

Basic idea in Howe/Lauter/Stevenhagen:

@ Given N, use Broker/Stevenhagen Contemp. Math. (2008):
Find an elliptic curve E; /F, with N points, for some p.

@ Find a supersingular curve E;/Fp.
@ Glue them together along n-torsion for some n.
@ Resulting curve has N points.

Problem:
@ Must have Eq[n] = E;[n] as Galois modules ...
@ So Trace(Ey) = Trace(Ex) mod n.. ..
@ So ndivides N —p—1.
@ Can’ttake n=2if N is odd.
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Higher-order gluings to the rescue!

If N# 1 mod 3:

The Broker/Stevenhagen algorithm can produce E; /Fy having
N points, and with p = N — 1 mod 3.

End result:

If N £ 1 mod 6, we can use 2- or 3-gluings to produce a
genus-2 curve with N points.

This was our motivation for finding nice formulas for 3-gluing.
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Application 2: Jacobians over Q with large torsion

Howe/Leprévost/Poonen, Forum Math. (2000)

@ Choose elliptic curves Eq, Eo over Q such that

e E; and E; have large rational torsion subgroups;

e Eq[2] and E,[2] are isomorphic Galois modules.
@ Glue E; and E, along 2-torsion, get a genus-2 curve C.
@ Jac C has large rational torsion:

e Odd part is same as E; x E,.

e Even part is generally smaller.

e With effort, can choose E; and E, so that even part does
not shrink too much.

Obtained many torsion groups, including Z/63Z.
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What about using 3-gluing?

New strategy

@ Choose elliptic curves Eq, E; over Q such that

e E; and E; have large rational torsion subgroups;

e There is a Galois-equivariant anti-isometry E;[3] — E[3].
@ Glue E4 and E; along 3-torsion, get a genus-2 curve C.
@ Jac C has large rational torsion:

e Non-3 part is same as E; x E,.
e 3-part is generally smaller.
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Choosing the elliptic curves

Implementation
@ Make a list of low-height elliptic curves with large torsion.
@ Find E;, E; having an anti-isometry E;[3] — E3[3].

Checking for an anti-isometry
@ Do 3-division polynomials define isomorphic Q-algebras?
@ If so, apply 3-gluing formulas and see if you get anything!

Disadvantage: Will get isolated examples, not families.
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Examples of new torsion groups obtained so far. ..

Torsion group Z/367Z

Glue an elliptic curve with Z/9Z to one with Z/12Z.
Found two examples.

Torsion group Z/567Z

Glue an elliptic curve with Z/7Z to one with Z/8Z.
Found one example.

Torsion group Z/707Z

Glue an elliptic curve with Z/7Z to one with Z/10Z.
Found one example, giving a new record torsion point order!

y? = 4x5% — 36x° — 35x* + 390x° + 1237x2 + 924x + 4356

v
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