Three-gluings of elliptic curves (Revised slides)

Everett W. Howe

Center for Communications Research, La Jolla

GeoCrypt 2011 Bastia, Corsica, 20 June 2011

Motivation

Two topics of interest

- Genus-2 curves with maps to elliptic curves
- Genus-2 curves with Jacobians isogenous to a product of elliptic curves

These are really the same topic...

Given:

- Two elliptic curves E_1 , E_2 over a field k
- An isomorphism ψ: E₁[n] → E₂[n] for some n > 0, such that ψ is an anti-isometry with respect to the Weil pairing

- A genus-2 curve *C* (possibly degenerate)
- Degree-n maps $C \rightarrow E_1$ and $C \rightarrow E_2$

Given:

- Two elliptic curves E_1 , E_2 over a field k
- An isomorphism ψ: E₁[n] → E₂[n] for some n > 0, such that ψ is an anti-isometry with respect to the Weil pairing

$$E_1[n] \times E_1[n] \xrightarrow{\mathsf{Weil}} \mu_n$$

- A genus-2 curve C (possibly degenerate)
- Degree-n maps $C \rightarrow E_1$ and $C \rightarrow E_2$

Given:

- Two elliptic curves E₁, E₂ over a field k
- An isomorphism ψ: E₁[n] → E₂[n] for some n > 0, such that ψ is an anti-isometry with respect to the Weil pairing

$$E_1[n] \times E_1[n] \xrightarrow{\mathsf{Weil}} \mu_n$$

$$E_2[n] \times E_2[n] \xrightarrow{\mathsf{Weil}} \mu_n$$

- A genus-2 curve C (possibly degenerate)
- Degree-n maps $C \rightarrow E_1$ and $C \rightarrow E_2$

Given:

- Two elliptic curves E₁, E₂ over a field k
- An isomorphism ψ: E₁[n] → E₂[n] for some n > 0, such that ψ is an anti-isometry with respect to the Weil pairing

$$E_1[n] \times E_1[n] \xrightarrow{\text{Weil}} \mu_n$$
 $\psi \times \psi \downarrow$
 $E_2[n] \times E_2[n] \xrightarrow{\text{Weil}} \mu_n$

- A genus-2 curve C (possibly degenerate)
- Degree-n maps $C \rightarrow E_1$ and $C \rightarrow E_2$

Given:

- Two elliptic curves E_1 , E_2 over a field k
- An isomorphism ψ: E₁[n] → E₂[n] for some n > 0, such that ψ is an anti-isometry with respect to the Weil pairing

$$E_1[n] \times E_1[n] \xrightarrow{\text{Weil}} \mu_n$$
 $\psi \times \psi \downarrow \qquad \qquad \downarrow \text{inv.}$
 $E_2[n] \times E_2[n] \xrightarrow{\text{Weil}} \mu_n$

- A genus-2 curve C (possibly degenerate)
- Degree-n maps $C \rightarrow E_1$ and $C \rightarrow E_2$

- Graph $(\psi) \subset (E_1 \times E_2)[n]$, a maximal isotropic subgroup
- $A = (E_1 \times E_2) / \operatorname{Graph}(\psi)$
- $\alpha \colon E_1 \times E_2 \to A$, the natural map

- Graph $(\psi) \subset (E_1 \times E_2)[n]$, a maximal isotropic subgroup
- $A = (E_1 \times E_2) / \operatorname{Graph}(\psi)$
- $\alpha : E_1 \times E_2 \rightarrow A$, the natural map

$$E_1 \times E_2 \xrightarrow{\text{mult. by } n} \widehat{E_1} \times \widehat{E_2}$$

- Graph $(\psi) \subset (E_1 \times E_2)[n]$, a maximal isotropic subgroup
- $A = (E_1 \times E_2) / \operatorname{Graph}(\psi)$
- $\alpha : E_1 \times E_2 \rightarrow A$, the natural map

- Graph $(\psi) \subset (E_1 \times E_2)[n]$, a maximal isotropic subgroup
- $A = (E_1 \times E_2) / \operatorname{Graph}(\psi)$
- $\alpha : E_1 \times E_2 \rightarrow A$, the natural map

- Graph $(\psi) \subset (E_1 \times E_2)[n]$, a maximal isotropic subgroup
- $A = (E_1 \times E_2) / \operatorname{Graph}(\psi)$
- $\alpha : E_1 \times E_2 \rightarrow A$, the natural map

- Graph $(\psi) \subset (E_1 \times E_2)[n]$, a maximal isotropic subgroup
- $A = (E_1 \times E_2) / \operatorname{Graph}(\psi)$
- $\alpha : E_1 \times E_2 \rightarrow A$, the natural map

- Graph $(\psi) \subset (E_1 \times E_2)[n]$, a maximal isotropic subgroup
- $A = (E_1 \times E_2) / \operatorname{Graph}(\psi)$
- $\alpha : E_1 \times E_2 \rightarrow A$, the natural map

- Graph(ψ) \subset ($E_1 \times E_2$)[n], a maximal isotropic subgroup
- $A = (E_1 \times E_2) / \operatorname{Graph}(\psi)$
- $\alpha : E_1 \times E_2 \rightarrow A$, the natural map

- Graph $(\psi) \subset (E_1 \times E_2)[n]$, a maximal isotropic subgroup
- $A = (E_1 \times E_2) / \operatorname{Graph}(\psi)$
- $\alpha : E_1 \times E_2 \rightarrow A$, the natural map

- Graph $(\psi) \subset (E_1 \times E_2)[n]$, a maximal isotropic subgroup
- $A = (E_1 \times E_2) / \operatorname{Graph}(\psi)$
- $\alpha : E_1 \times E_2 \rightarrow A$, the natural map

- Graph $(\psi) \subset (E_1 \times E_2)[n]$, a maximal isotropic subgroup
- $A = (E_1 \times E_2) / \operatorname{Graph}(\psi)$
- $\alpha : E_1 \times E_2 \rightarrow A$, the natural map

We have:

- Graph $(\psi) \subset (E_1 \times E_2)[n]$, a maximal isotropic subgroup
- $A = (E_1 \times E_2) / \operatorname{Graph}(\psi)$
- $\alpha : E_1 \times E_2 \rightarrow A$, the natural map

This gives degree-n map $\varphi_1: C \to E_1$. Get φ_2 similarly.

An old story

Theorem

Every degree-n map $C \to E_1$ that does not factor through an isogeny arises in this manner.

The associated E_2 and $\psi \colon E_1[n] \to E_2[n]$ are unique up to isomorphism.

Theorem

Every genus-2 curve with non-simple Jacobian arises in this manner, perhaps in several ways.

These results are old. What I just presented is close to what appears in Kani, *J. Reine Angew. Math.* (1997), which is based on Frey/Kani, in *Arithmetic Algebraic Geometry* (1991).

An older story

Frey and Kani note:

They can't find this construction explicitly in literature, but it 'seems to be known in principle'. They cite:

- Serre, Sem. Théorie Nombres Bordeaux (1982/82)
- Ibukiyama/Katsura/Oort, Compositio Math. (1986)

But if we allow for a change in perspective, it's older than that.

An even older story

Kowalevski's dissertation, written 1874

- Published in Acta Math. (1884).
- Mentions unpublished result of Weierstrass (her advisor):

Wenn aus einer Function $\vartheta(v_1,\dots,v_\rho|\tau_{11},\dots,\tau_{\rho\rho})$ durch irgend eine Transformation k^{ten} Grades eine andere hervorgeht, die ein Produkt aus einer ϑ -Funktion von $(\rho-1)$ Veränderlichen und einer elliptischen ist, so kann der ersprüngliche Funktion stets durch eine lineare Transformation (bei der k=1 ist) in eine andere $\vartheta(v_1',\dots,v_\rho'|\bar{\tau}_{11},\dots,\bar{\tau}_{\rho\rho})$ verwandelt werden, in der

$$\overline{ au}_{12} = \frac{\mu}{k}, \overline{ au}_{13} = 0, \dots, \overline{ au}_{1\rho} = 0$$

ist, wo μ einer der Zahlen 1, 2, ..., k-1 bedeutet.

An even older story, continued

Similar result, discovered independently by Picard

• Published in Bull. Math. Soc. France (1883).

S'il existe une intégrale de premièr espèce correspondant à la relation algébrique

$$y^2 = x(1-x)(1-k^2x)(1-l^2x)(1-m^2x)$$

qui ait seulement deux périodes, on pourra trouver un système d'intégrales normales, dont le tableau des périodes sera

0 1
$$G \frac{1}{D}$$

1 0 $\frac{1}{D}$ G'

où D désigne un entier réel et positif.

A question of perspective

The result of Frey and Kani shows that degree-*n* covers of elliptic curves, and "*n*-gluings" of two elliptic curves, are essentially the same thing.

In the 19th century, there was more interest in the former.

But I think 19th-century mathematicians would have recognized Frey and Kani's result.

Explicit examples of genus-2 covers

Legendre's special ultra-elliptic integrals (1828)

- Traité des fonctions elliptiques, 3ième supplement, §12
- Shows that several integrals involving the expression

$$\sqrt{x(1-x^2)(1-k^2x^2)}$$

can be evaluated in terms of elliptic integrals.

Explicit examples of genus-2 covers

Jacobi's review of Legendre's book

- J. Reine Angew. Math. (1832)
- Generalizes Legendre's example to integrals involving

$$\sqrt{x(1-x)(1-\lambda x)(1-\mu x)(1-\lambda \mu x)}$$

Jacobi's family is complete

Königsberger (J. Reine Angew Math (1867)) and Picard (Bull. Soc. Math. France (1883)) show:

Theorem

Every genus-2 curve over $\mathbb C$ with a degree-2 map to an elliptic curve occurs in Jacobi's family.

More memorable version of Jacobi's family over $\mathbb C$

Suppose we want to glue together the curves

$$E_1: \quad y^2 = x(x-1)(x-\lambda)$$

$$E_2: y^2 = x(x-1)(x-\mu)$$

using the isomorphism $E_1[2] \to E_2[2]$ that sends (0,0) to (0,0) and (1,0) and (1,0).

The resulting genus-2 curve:

$$y^{2} = \left(x^{2} - 1\right)\left(x^{2} - \frac{\lambda}{\mu}\right)\left(x^{2} - \frac{\lambda - 1}{\mu - 1}\right)$$

Two-gluing over non-algebraically closed fields:

Howe/Leprévost/Poonen, Forum Math. (2000):

Given two elliptic curves:

$$y^{2} = f = (x - \alpha_{1})(x - \alpha_{2})(x - \alpha_{3})$$
$$y^{2} = q = (x - \beta_{1})(x - \beta_{2})(x - \beta_{3})$$

Set $\alpha_{ij} = \alpha_i - \alpha_j$ and $\beta_{ij} = \beta_i - \beta_j$, and define

$$\begin{split} & A = \mathrm{disc}(g) \left(\frac{\alpha_{32}^2}{\beta_{32}} + \frac{\alpha_{21}^2}{\beta_{21}} + \frac{\alpha_{13}^2}{\beta_{13}} \right) \bigg/ \left(\alpha_1 \beta_{32} + \alpha_2 \beta_{13} + \alpha_3 \beta_{21} \right) \\ & B = \mathrm{disc}(f) \left(\frac{\beta_{32}^2}{\alpha_{32}} + \frac{\beta_{21}^2}{\alpha_{21}} + \frac{\beta_{13}^2}{\alpha_{13}} \right) \bigg/ \left(\beta_1 \alpha_{32} + \beta_2 \alpha_{13} + \beta_3 \alpha_{21} \right) \end{split}$$

Gluing gives the genus-2 curve

$$y^{2} = -(A\alpha_{21}\alpha_{13}x^{2} + B\beta_{21}\beta_{13}) \cdot (A\alpha_{32}\alpha_{21}x^{2} + B\beta_{32}\beta_{21}) \cdot (A\alpha_{13}\alpha_{32}x^{2} + B\beta_{13}\beta_{32})$$

Alternative view of 2-gluing formulas over arbitrary K

To a quadruple $(t, b, c, d) \in K^4$ with $dt \neq 0$ and

$$4b^3d - b^2c^2 - 18bcd + 4c^3 + 27d^2 \neq 0$$

associate curves

$$C_{t,b,c,d}$$
: $ty^2 = x^6 + bx^4 + cx^2 + d$
 $E_{t,b,c,d,1}$: $ty^2 = x^3 + bx^2 + cx + d$
 $E_{t,b,c,d,2}$: $ty^2 = dx^3 + cx^2 + bx + 1$

Obvious degree-2 maps $C_{t,b,c,d} \rightarrow E_{t,b,c,d,1}$ and $C \rightarrow E_{t,b,c,d,2}$.

Theorem

Every pair of double covers $C \to E_1$ and $C \to E_2$ over K occurs in this family, and the quadruple (t,b,c,d) is unique up to scaling

$$(t, b, c, d) \mapsto (\lambda^6 \mu^2 t, \lambda^2 b, \lambda^4 c, \lambda^6 d)$$

Similar framework for degree-3 maps

Howe/Lauter/Stevenhagen, draft preprint (2011):

Notation:

To every quintuple $(a, b, c, d, t) \in K^5$ such that

$$12ac + 16bd = 1$$
, $a^3 + b^2 \neq 0$, $c^3 + d^2 \neq 0$, $t \neq 0$

set
$$\Delta_1 := a^3 + b^2$$
 and $\Delta_2 := c^3 + d^2$.

Define curves $C_{a,b,c,d,t}$, $E_{a,b,c,d,t,1}$, $E_{a,b,c,d,t,2}$:

$$ty^{2} = (x^{3} + 3ax + 2b)(2dx^{3} + 3cx^{2} + 1)$$

$$ty^{2} = x^{3} + 12(2a^{2}d - bc)x^{2} + 12(16ad^{2} + 3c^{2})\Delta_{1}x + 512\Delta_{1}^{2}d^{3}$$

$$ty^{2} = x^{3} + 12(2bc^{2} - ad)x^{2} + 12(16b^{2}c + 3a^{2})\Delta_{2}x + 512\Delta_{2}^{2}b^{3}$$

The maps

Define rational functions:

$$u_1 = 12\Delta_1 \frac{-2dx + c}{x^3 + 3ax + 2b} \qquad v_1 = \Delta_1 \frac{16dx^3 - 12cx^2 - 1}{(x^3 + 3ax + 2b)^2}$$

$$u_2 = 12\Delta_2 \frac{x^2(ax - 2b)}{2dx^3 + 3cx^2 + 1} \qquad v_2 = \Delta_2 \frac{x^3 + 12ax - 16b}{(2dx^3 + 3cx^2 + 1)^2}$$

Simple verification:

$$(x, y) \mapsto (u_i, yv_i)$$
 gives a degree-3 map

$$\varphi_{a,b,c,d,t,i}: C_{a,b,c,d,t} \to E_{a,b,c,d,t,i}.$$

General formulas for 3-gluings

Theorem (Howe/Lauter/Stevenhagen)

Given two degree-3 maps

$$\varphi_1: C \to E_1 \qquad \varphi_2: C \to E_2$$

with $\varphi_{2*}\varphi_1^* = 0$, there exists a quintuple (a, b, c, d, t) whose associated triple covers are isomorphic to φ_1 and φ_2 .

The quintuple (a, b, c, d, t) is unique up to scaling:

$$(a,b,c,d,t) \mapsto (\lambda^2 a, \lambda^3 b, \lambda^{-2} c, \lambda^{-3} d, \lambda \mu^2 t).$$

Earlier work on explicit formulas for triple covers

- Hermite: Ann. Soc. Sci. Bruxelles Sér. I (1876)
 - Works over C
 - Only gives 1-dimensional family
- Goursat: Bull. Soc. Math. France (1885)
 - Works over C
- Kuhn: Trans. Amer. Math. Soc. (1988)
 - Doesn't give all curves and maps
 - Breaks into cases: 'generic' and 'special'
- Shaska: Forum Math. (2004) (inter alia)
 - Works over algebraically closed field
 - Gives formulas... with typographical errors
 - Breaks into cases: 'non-degenerate' and 'degenerate'

What we needed

Lauter, Stevenhagen, and I wanted a result that...

- works over finite fields
- does not involve special cases

We used Kuhn and Shaska's work, and tidied up.

The special cases

Ramification in a triple cover $\varphi: C \to E$

Two possibilities:

- Two points P and P', sharing same x-coordinate, each with ramification index 2; the points Q and Q' with $\varphi(Q) = \varphi(P)$ and $\varphi(Q') = \varphi(P')$ also have same x-coordinate.
- One ramification point P, with index 3. The point P must be a Weierstrass point.

The first case degenerates to the second as $x(P) \rightarrow x(Q)$.

Renormalizing

Kuhn and Shaska

Normalize first case so that x(P) = 0 and $x(Q) = \infty$.

- Formulas cannot possibly degenerate well.
- Lose symmetry between E_1 and E_2 .

We normalized so that $x(P_1) = 0$ and $x(P_2) = \infty$.

Formulas degenerate well, and regain $E_1 \leftrightarrow E_2$ symmetry.

Everything old is new again

Our curve:

$$ty^2 = (x^3 + 3ax + 2b)(2dx^3 + 3cx^2 + 1)$$

where 12ac + 16bd = 1.

Goursat's curve:

$$y^2 = (x^3 + ax + b)(x^3 + px^2 + q)$$

where q = 4b + (4/3)ap.

So Goursat's family only misses case d = 0.

Up to symmetry, only misses case b = d = 0.

That's just one curve!

Application 1: Building a genus-2 curve with N points

Basic idea in Howe/Lauter/Stevenhagen:

- Given N, use Bröker/Stevenhagen Contemp. Math. (2008): Find an elliptic curve E_1/\mathbb{F}_p with N points, for some p.
- Find a supersingular curve E_2/\mathbb{F}_p .
- Glue them together along *n*-torsion for some *n*.
- Resulting curve has N points.

Problem:

- Must have $E_1[n] \cong E_2[n]$ as Galois modules . . .
- So Trace(E_1) \equiv Trace(E_2) mod $n \dots$
- So n divides N p 1.
- Can't take n = 2 if N is odd.

Higher-order gluings to the rescue!

If $N \not\equiv 1 \mod 3$:

The Bröker/Stevenhagen algorithm can produce E_1/\mathbb{F}_p having N points, and with $p \equiv N-1 \mod 3$.

End result:

If $N \not\equiv 1 \mod 6$, we can use 2- or 3-gluings to produce a genus-2 curve with N points.

This was our motivation for finding nice formulas for 3-gluing.

Application 2: Jacobians over Q with large torsion

Howe/Leprévost/Poonen, Forum Math. (2000)

- Choose elliptic curves E_1 , E_2 over \mathbb{Q} such that
 - E₁ and E₂ have large rational torsion subgroups;
 - $E_1[2]$ and $E_2[2]$ are isomorphic Galois modules.
- Glue E₁ and E₂ along 2-torsion, get a genus-2 curve C.
- Jac C has large rational torsion:
 - Odd part is same as $E_1 \times E_2$.
 - Even part is generally smaller.
 - With effort, can choose E₁ and E₂ so that even part does not shrink too much.

Obtained many torsion groups, including $\mathbb{Z}/63\mathbb{Z}$.

What about using 3-gluing?

New strategy

- Choose elliptic curves E_1 , E_2 over \mathbb{Q} such that
 - E₁ and E₂ have large rational torsion subgroups;
 - There is a Galois-equivariant anti-isometry $E_1[3] \rightarrow E_2[3]$.
- Glue E_1 and E_2 along 3-torsion, get a genus-2 curve C.
- Jac C has large rational torsion:
 - Non-3 part is same as $E_1 \times E_2$.
 - 3-part is generally smaller.

Choosing the elliptic curves

Implementation

- Make a list of low-height elliptic curves with large torsion.
- Find E₁, E₂ having an anti-isometry E₁[3] → E₂[3].

Checking for an anti-isometry

- Do 3-division polynomials define isomorphic Q-algebras?
- If so, apply 3-gluing formulas and see if you get anything!

Disadvantage: Will get isolated examples, not families.

Examples of new torsion groups obtained so far...

Torsion group $\mathbb{Z}/36\mathbb{Z}$

Glue an elliptic curve with $\mathbb{Z}/9\mathbb{Z}$ to one with $\mathbb{Z}/12\mathbb{Z}$. Found two examples.

Torsion group $\mathbb{Z}/56\mathbb{Z}$

Glue an elliptic curve with $\mathbb{Z}/7\mathbb{Z}$ to one with $\mathbb{Z}/8\mathbb{Z}.$ Found one example.

Torsion group $\mathbb{Z}/70\mathbb{Z}$

Glue an elliptic curve with $\mathbb{Z}/7\mathbb{Z}$ to one with $\mathbb{Z}/10\mathbb{Z}.$ Found one example, giving a new record torsion point order!

$$y^2 = 4x^6 - 36x^5 - 35x^4 + 390x^3 + 1237x^2 + 924x + 4356$$