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Motivation

Curves with many points
Used in coding theory. . .
. . . but also a source of interesting math problems.
Nq(g) = max. number of points on a genus-g curve /Fq

manypoints.org
Gathers best known results on Nq(g) for small q and g
Lower bounds from: Class field theory, fiber products,
special curves, guided searches, . . .
Upper bounds from: Weil-Serre bound, Oesterlé bound,
analysis of isogeny classes, . . .
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Curves of small genus

Know Nq(1) and Nq(2) for all q
In fact, know exactly which polynomials occur as characteristic
polynomials of Frobenius. . .

for elliptic curves (Deuring/Waterhouse);
for genus-2 curves (H.-Nart-Ritzenthaler).

Know Nq(3) for all q in manypoints table
Values filled in by Serre, Auer-Top, Top, others.

But there are 23 values of q < 100 for which Nq(4) is unknown.
(As of February 2011.)
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This talk

1. Improve upper and lower bounds for Nq(4) for q < 100
Zaytsev’s results on Jacobians isomorphic to Eg

Double covers of elliptic curves
Double covers of genus-2 curves
Hermitian forms over non-maximal quadratic orders
Hermitian forms over Z[ζ5]

2. Genus-4 curves with isomorphic Jacobians
Idea suggested by examples of curves with many points
First explicit examples
Can show: One can find arbitrarily many genus-4 curves
sharing same (unpolarized) Jacobian.
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Part 1: Improving bounds on Nq(4)
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Zaytsev’s work

Consider a curve C/Fq with. . .

Jac C ∼= Eg , with g not too big
End E a maximal order O of class number 1
E ordinary

Schiemann: Calculated unimodular Hermitian forms on Og .

Zaytsev: Deduces existence of automorphisms of C, uses
these to obtain contradictions.

Genus 4 Weil-Serre bound not reached for these q < 100
new: 11, 17, 23, 37, 47, 59, 61, 83
previously eliminated: 8, 13, 31, 32, 43, 73
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Real Weil polynomials

C = a genus-g curve over Fq
f = the characteristic polynomial of Frobenius for C

a.k.a. the Weil polynomial of C

The real Weil polynomial
We can write

f (x) = xg h(x + q/x)

for a polynomial h of degree g, the real Weil polynomial of C.
All complex roots of h are real, in interval [−2

√
q,2
√

q].
h2 is characteristic polynomial of Frobenius + Verschiebung.

Everett W. Howe New results on curves of genus 4 7



Producing possible real Weil polynomials

IsogenyClasses.magma
Magma package, from H.-Lauter papers
Given q, g, N, produces list of polynomials that includes
the real Weil polynomials of all genus-g curves over Fq
with N points
For each polynomial, can sometimes deduce properties of
curves with that real Weil polynomial (if any exist)
Example: Sometimes deduce that C must be a double
cover of an elliptic curve E in a known isogeny class
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Genus-4 double covers of elliptic curves

Given E over Fq with q odd.

Normal forms for genus-4 double covers of E

Take equation for E , together with z2 = f , where
f is a function on E ,
div f = P1 + · · ·+ P6 + 2Q − 8∞,
Q taken from representatives of E(Fq)/3E(Fq) modulo
automorphisms of E .
(Need only look at set of f ’s modulo squares in F∗

q.)
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Example: q = 31

Weil-Serre bound is 76. Older methods: N31(4) ≤ 73.

For N = 73, IsogenyClasses.magma says:

Only one possible polynomial: (x + 8)(x + 11)3.
Using techniques of H.-Lauter: Must be a double cover of
an elliptic curve with real Weil polynomial x + 11.

y2 = x3 + 3, z2 = c6x3 + c5xy + c4x2 + c3y + c2x + c1

Enumerate these covers
No curves with 73 points. But some have 72. So N31(4) = 72.

Example: y2 = x3 + 3, z2 = 3x3 − 9
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Other possible deductions from real Weil polynomial

Things one might deduce:
Curve must be a double cover of a genus-2 curve.

Enumeration will determine whether curve exists.
Curve cannot be a double-cover of a genus-2 curve.

. . . so don’t bother enumerating them!
Sometimes, can deduce neither.

It can’t hurt to look. . .

Everett W. Howe New results on curves of genus 4 11



Genus-4 double covers of genus-2 curves

Let X be a genus-2 curve over Fq, with q odd.

Normal form for genus-4 double covers of X

Take equation for X , together with z2 = f , where
f is a function on X with div f = P1 + P2 + 2D − 6∞,
D effective, degree 2.

To enumerate double covers:
Loop over D.
Loop over f in Riemann-Roch space L(6∞− 2D).
Count points on z2 = f .
(Need only look at f up to squares in F∗

q.)
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Example: q = 47

Zaytsev eliminates N = 100 (Weil-Serre bound).
Older techniques eliminate N = 99.

For N = 98, IsogenyClasses.magma says:
Two possible polynomials:
(x + 11)(x + 13)3 and (x2 + 25x + 155)2.
First: Must be double cover of x + 11, eliminate by search.
Second: Maybe a double cover of x2 + 25x + 155?
Unique genus-2 curve to consider.

Find example!
y2 = x5 + 5x3 + 12x2 + 37x + 32

5z2 = y + 11x3 + 46x2 + 42x + 27
So N47(4) = 98.
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Hermitian forms over quadratic orders

Suppose ψ : E4 → Jac C is isogeny of degree n, where End E is
an order O in quadratic field.

Pull back polarization to E

Pull back principal polarization λ on Jac C to get µ on E4.
Degree of µ is (degψ)2.

View µ as Hermitian form on O4.
Suppose γ = (α1, . . . , α4) ∈ O4 has squared-length m.
Consider map Γ : E → E4 determined by γ.
Γ∗µ is m times the canonical polarization on E .
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Getting a degree-m map C → E from a diagram

Jac C
λ
∼

// Ĵac C

So degϕ = m.
We would like bounds on the length of the shortest vector in a
Hermitian lattice with a given Gram determinant.
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Ê4
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Getting a degree-m map C → E from a diagram

E
degree m2

//

Γ
��

ÊOO bΓ
E4

µ //
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Ê4
OO
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λ
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Bounds on short vectors

Suppose discO = ∆ and we want to enumerate Hermitian
forms on O4 with Gram determinant D.

If D and ∆ are small:
Can enumerate directly.
Each form has a sublattice given by Hermitian matrix with

product of diagonal elements bounded by D∆2

non-diagonals bounded by positive definiteness

Can be quite slow.

If O maximal and a PID, and D is a norm from O:
Build forms from unimodular forms, listed by Schiemann.
This is much more efficient.

Everett W. Howe New results on curves of genus 4 16



Example: Weil-Serre bound for q = 19.

Only real Weil polynomial for C is (x + 8)4.

Two elliptic curves with real Weil polynomial x + 8:

E with CM by O = Z[(1 +
√
−3)/2],

F with CM by Z[
√
−3].

Jac C is one of E4, E3 × F , E2 × F 2, E × F 3, F 4.
Pull back polarization to E4.
Hermitian form on O4 with Gram determinant 1, 2, 4, 8, 16.
Short vectors of length at most 1, 1, 2, 2, 3.

So: Double cover of E unless Jac C ∼= F 4.
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Eliminating final case

We have a problem if principal polarization on F 4 pulls back to
polarization of degree 162 on E4 with short vector of length 3.

Enumerate Hermitian matrices in M4(O) of determinant 16.

Look at those with short vector of length 3.

Verify that none of these gives polarization with kernel
containing a maximal isotropic subgroup G with E4/G ∼= F 4.

Results
No curve attaining Weil-Serre bound for q = 19 and q = 67.
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Other nonmaximal quadratic orders

Can make similar arguments for ∆ = −16 and ∆ = −28.

Results
No curve attaining Weil-Serre bound for q ∈ {23,53,71}.
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Hermitian forms over Z[ζ5]

Zaytsev and other methods show N11(4) ≤ 34.
N = 34: Only possible polynomial is (x2 + 11x + 29)2.

Observations/deductions
Jac C is isogenous to A2 for some abelian surface A.
From Weil polynomial, determine that End A = Z[ζ5].
Z[ζ5] is PID, so A unique in isogeny class, and Jac C ∼= A2.
Polarizations on A2 ←→ rank-2 unimodular Hermitian
forms over Z[ζ5]

Strong form of Euclidean algorithm on Z[ζ5] gives
reduction theory on Hermitian forms.
Only unimodular Hermitian form is trivial one.
No polarization on A2 gives a Jacobian.
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Results from Hermitian forms over Z[ζ5]

q = 11
Hermitian forms over Z[ζ5] show: N11(4) < 34.
Find a double cover of genus-2 curve with N = 33.
So N11(4) = 33.

q = 61
If N = 120, IsogenyClasses.magma gives two polynomials:
(x + 13)(x + 15)3 and (x2 + 29x + 209)2.
First: Double cover of an elliptic curve. Eliminated.
Second: Once again Jac C ∼= A2 with End A = Z[ζ5].
Hermitian forms over Z[ζ5] show: N61(4) < 120.
Find many double covers of elliptic curves with N = 118.
So 118 ≤ N61(4) ≤ 119.
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Final results

q old new q old new q old new
2 8 8 23 – 58 57 59 – 118 116
3 12 12 25 66 66 61 – 120 118 – 119
4 15 15 27 64 64 64 129 129
5 18 18 29 – 70 67 – 68 67 – 132 129
7 24 24 31 – 73 72 71 132 – 136 134
8 25 25 32 71 – 72 71 – 72 73 – 139 138
9 30 30 37 – 84 82 79 – 148 148

11 – 34 33 41 – 90 88 81 154 154
13 – 39 38 43 – 93 92 83 – 154 152
16 45 45 47 – 98 98 89 – 162 160 – 162
17 – 48 46 49 – 106 102 – 106 97 – 174 174
19 – 52 48 – 50 53 – 110 108

Table: Old and new ranges for Nq(4), for q < 100.

(The old ranges include Zaytsev’s improvements.)

The manypoints.org tables will be updated when I finish
double-checking the values that rely on computer searches.
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Part 2: Curves of genus 4 with isomorphic Jacobians
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Curves with isomorphic Jacobians

Question
Can an abelian variety A have two non-isomorphic principal
polarizations λ1 and λ2, with (A, λ1) and (A, λ2) Jacobians?

More generally: How many curves C can have Jac C ∼= A?

Today, let’s restrict attention to the complex numbers C.
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History: Genus 2

Humbert (1900): There are simple A with two principal
polarizations. (And simple polarized surfaces are
Jacobians.)
Hayashida-Nishi (1965): If E has CM, E2 can have many
non-isomorphic polarizations coming from curves.
Explicit equations: For non-simple Jacobians, H. (1995).
For simple Jacobians, defined over Q, H. (2005).
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History: Genus 3

Generalize Humbert and Hayashida-Nishi. Use fact that
principally polarized threefolds are (usually) Jacobians.
Explicit non-simple examples over C: H. (2000).
Explicit non-simple examples over Q: H. (2005).
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History: Genus 4

Much more difficult: A principally polarized abelian fourfold is
usually not a Jacobian.

Ciliberto-van der Geer (1994):
Showed there are simple A that are Jacobians in two ways.
Used A with real multiplication.
Argument shows that a certain moduli space has positive
dimension.
Does not provide explicit examples.

Today: Will give explicit non-simple examples.
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A family of genus-4 curves

For every t define a genus-4 curve

Dt : y3 = 2x(x2 − 2t + 2)(x2 − 2t − 2).

Let ∆ < 0 be fundamental discriminant divisible by 24,

H = Hilbert class polynomial of ∆

g(x) = numerator of H
(

2433 (4x − 5)3

(x − 1)(x + 1)3

)
f (x) = gcd(g(x),g(−x))

Theorem
If s and t are distinct positive real roots of f , then Ds and Dt are
non-isomorphic, and yet have isomorphic Jacobians.
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A family of genus-4 curves

If s and t are distinct positive real roots of f , then Ds and Dt are non-isomorphic, and
yet have isomorphic Jacobians.

Number of examples
Number of positive real roots is half the size of the 2-torsion
subgroup of the class group of ∆.

Example
With ∆ = −120, can take

s =

√
1235 + 70

√
10

27
t =

√
1235− 70

√
10

27

Fields of definition
I think the theorem remains true over any field that contains all
of the roots of z3 + 1/z3 + 2s = 0 and z3 + 1/z3 + 2t = 0.
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Where does this theorem come from?

We get the curves Dt as double covers of genus-2 curves Ct
with automorphisms of order 3.
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Genus-2 curves with automorphisms of order 3

Suppose C is a genus-2 curve with order-3 automorphism

Can write C as Ct : y2 = x6 + tx3 + 1.
Extra involution: (x , y) 7→ (1/x , y/x3).
Get map from C to elliptic curve, so Jacobian is not simple.

Decomposition of Jacobian
Given a 3-isogeny ϕ : E → E ′, let A = E × E ′.

Take λ =

[
2 ϕ̂
ϕ 2

]
, α =

[
−2 ϕ̂
−ϕ 1

]
.

α is automorphism of (A, λ), and α2 + α+ 1 = 0.
All order-3 automorphism of PPAS’s arise in this way.
Jac Ct = Et × E ′

t .
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Genus-2 curves with isomorphic Jacobians

Let K be a quadratic field in which 3 is not inert.
Let O be the maximal order of K .
Let P be a prime of O over 3.
For every ideal A, the elliptic curves given by the lattices A

and AP in C are 3-isogenous.

Finding s and t with Jac Cs = Jac Ct

Choose s that gives isogeny C/A→ C/(AP).
Choose t that gives isogeny C/B→ C/(BP).
If A2 = B2 in class group, then Es × E ′

s
∼= Et × E ′

t .
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Double covers of Ct

Write x6 + tx3 + 1 = (x3 − a)(x3 − 1/a).

Kummer extension:

Dt

uujjjjjjjjjjjjjjjjjj

�� **TTTTTTTTTTTTTTTTTTT

u2 = x3 − a

))TTTTTTTTTTTTTTTTTT y2 = (x3 − a)(x3 − 1/a)

��

v2 = x3 − 1/a

ttjjjjjjjjjjjjjjjjjjj

P1

Left and right hand curves are elliptic curves with j = 0.

Kani-Rosen
Jac Dt ∼ Jac Ct × E2

0 = Et × E ′
t × E0 × E0.

Not hard to determine the kernel of Et × E ′
t × E0 × E0 → Jac Dt .
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Bootstrapping

So if Cs and Ct have isomorphic Jacobians, then Ds and Dt
have isogenous Jacobians.

By keeping track of kernels of isogenies, can determine when
Jac Ds and Jac Dt are isomorphic.
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Source of construction

Several curves found in searches for curves with many points
had this form. Analyzing their Jacobians led to this construction.

Have tried to make variants of this construction to get
higher-genus examples. No success yet.
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