Characteristic polynomials of automorphisms of hyperelliptic curves

Robert M. Guralnick¹ Everett W. Howe²

¹University of Southern California

²Center for Communications Research, La Jolla

Arithmetic, Geometry, Cryptography, and Coding Theory CIRM, November 2007

The basic questions.

Let C be a genus-g curve over an algebraically closed field k. Assume g > 1.

Let α be an automorphism of C.

Then α^* is an automorphism of the Jacobian of C.

Let
$$n=$$
 order of α .
Let $f=$ characteristic polynomial of α^*

$$= x^{2g} + \cdots + 1 \in \mathbb{Z}[x]$$

Questions

What does the value of n tell us about f? In particular, does n determine f?

Partial answers.

The order does tell us some things.

- Every root ζ of f satisfies $\zeta^n = 1$.
- n is the smallest integer for which this holds.
- At most 2 + (2g 2)/n of the ζ are equal to 1.
 - Consider the degree-n map $C \longrightarrow D := C/\langle \alpha \rangle$.
 - We have Jac $D \sim (\operatorname{Jac} C)^{\alpha=1}$.
 - Thus the genus of *D* is half the number of ζ equal to 1.
 - Apply Riemann-Hurwitz.

But the order does not tell us everything.

Suppose α is an involution of a genus-3 curve C. Three polynomials $x^6 + \cdots + 1$ meet the conditions above. All three occur, for some choice of C and α .

Hyperelliptic curves.

Suppose *C* is hyperelliptic, with hyperelliptic involution ι .

Then α induces an automorphism $\overline{\alpha}$ of $C/\langle \iota \rangle \cong \mathbb{P}^1$.

Let \bar{n} be the order of $\bar{\alpha}$. Note that $\bar{n} = n$ or $\bar{n} = n/2$.

Question

Do the values of n and \bar{n} determine f?

Another partial answer.

In general, n and \bar{n} do not determine f.

Suppose *C* is genus-3 hyperelliptic curve.

Suppose $\alpha \neq \iota$ is an involution, so $n = \bar{n} = 2$.

Then f can be either $(x-1)^2(x+1)^4$ or $(x-1)^4(x+1)^2$.

Both possibilities occur.

A case where *n* and \bar{n} do determine *f*.

Define ε by the conditions

$$\varepsilon \equiv -2g \bmod \bar{n}$$

and

$$0 \le \varepsilon < \bar{n}$$
.

Theorem

Suppose g is even or \bar{n} is odd. Then

$$f = \begin{cases} \frac{(x^{\overline{n}} + 1)^{(2g + \varepsilon)/\overline{n}}}{(x+1)^{\varepsilon}} & \text{if } n = 2\overline{n}; \\ \frac{(x^{\overline{n}} - 1)^{(2g + \varepsilon)/\overline{n}}}{(x-1)^{\varepsilon}} & \text{if } n = \overline{n} \text{ and } \overline{n} \text{ is odd}; \\ \frac{(x^{\overline{n}} - 1)^{(2g+2)/\overline{n}}}{(x^2 - 1)} & \text{if } n = \overline{n} \text{ and } \overline{n} \text{ is even.} \end{cases}$$

Restrictions on g and \bar{n} .

We defined ε so that

$$arepsilon \equiv -2g mod ar n \qquad ext{and} \qquad 0 \le arepsilon < ar n.$$

We can say more about ε , and hence about g and \bar{n} .

Theorem

- *We have* $\varepsilon \in \{0, 1, 2\}$ *.*
- Suppose g and \bar{n} are even and $n = \bar{n}$. Then $\bar{n} \equiv 2 \mod 4$, and if $\bar{n} > 2$ then $\varepsilon = 2$.
- Suppose g and \bar{n} are even and $n = 2\bar{n}$. Then $\varepsilon = 0$.

Idea of the proof of the first theorem.

Let $\zeta_1, \ldots, \zeta_{2g}$ be the roots of f. For each divisor d of n, define

$$M_d = (\text{number of } \zeta \text{ that satisfy } \zeta^d = 1)$$

To determine f, it is enough to determine the M_d for all d.

Key idea: M_d is twice the genus of the quotient of C by $\langle \alpha^d \rangle$.

Quotients of hyperelliptic curves.

Let $\beta = \alpha^d$, and let $D = C/\langle \beta \rangle$. Goal: Compute genus h of D.

If $\iota \in \langle \beta \rangle$ then *D* has genus 0.

Otherwise, let $\overline{\beta}$ be the induced automorphism on $C/\langle \iota \rangle = \mathbb{P}^1$. Set $m = \operatorname{order} \beta = \operatorname{order} \overline{\beta}$.

We understand the bottom map: In appropriate coördinates, it's $x \mapsto x^m$ or $x \mapsto x^p - x$.

How are *g* and *h* related to one another?

$$\begin{array}{ccc}
C & \xrightarrow{\langle \beta \rangle} & D \\
\downarrow & & \downarrow \\
\mathbb{P}^1 & \xrightarrow{\langle \overline{\beta} \rangle} & \mathbb{P}^1
\end{array}$$

Let
$$e = \begin{pmatrix} \text{\# points of } \mathbb{P}^1 \text{ ramified in both } \\ \text{the right and the bottom map} \end{pmatrix}$$

Proposition

We have $e \in \{0, 1, 2\}$, and if char $k \neq 2$ then

	m odd	m even
<i>e</i> = 0	h = (g+1)/m - 1	h = (g+1)/m - 1
<i>e</i> = 1	2h = (2g+1)/m-1	2h = (2g+2)/m-1
e = 2	h=g/m	h=(g+1)/m

Notice: If *m* and *e* are both even then *g* must be odd.

So if g is even:

	<i>m</i> odd	<i>m</i> even
<i>e</i> = 0	2h = (2g+2)/m-2	(not possible)
e = 1	2h = (2g+1)/m-1	2h = (2g+2)/m-1
<i>e</i> = 2	2h=2g/m	(not possible)

Corollary

If g is even or m is odd, then e is determined by g and m:

- If m is even then e = 1.
- If m is odd then $0 \le e < m$ and $e \equiv 2g + 2 \mod m$.

Likewise, h is determined by g and m.

Note: Corollary is true in all characteristics.

The structure of the complete argument.

To recapitulate:

- \bullet α is an automorphism of genus-g curve C.
- ② By assumption, either g is even or the order of $\overline{\alpha}$ is odd.
- **3** Characteristic polynomial f of α^* is determined by the values of M_d for the divisors d of n.
- **4** Here M_d is number of roots ζ of f with $\zeta^d = 1$.
- **5** M_d is twice the genus of quotient of C by α^d .
- **1** By (2), either g is even or the order of $\overline{\alpha}^d$ is odd.
- In this case, we have a formula for the genus of the quotient.

Completing the argument.

All that is left:

Show that the values of M_d we calculate agree with the values predicted by the f's in the theorem.

This is an easy exercise.

Example: Genus-2 curves.

(n, \bar{n})	characteristic polynomial
(1,1)	$(x-1)^4$
(2, 1)	$(x+1)^4$
(2,2)	$(x-1)^2(x+1)^2$
(3,3)	$(x^2 + x + 1)^2$
(4, 2)	$(x^2+1)^2$
(5,5)	$x^4 + x^3 + x^2 + x + 1$
(6,3)	$(x^2 - x + 1)^2$
(6,6)	$(x^2-x+1)(x^2+x+1)$
(8,4)	$x^4 + 1$
(10, 5)	$x^4 - x^3 + x^2 - x + 1$

Characteristic polynomials for automorphisms of genus-2 curves. Igusa: The list is complete in characteristic \neq 2, 3.

The end.

Fin