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The basic questions.

Let C be a genus-g curve over an algebraically closed field k .
Assume g > 1.

Let α be an automorphism of C.

Then α∗ is an automorphism of the Jacobian of C.

Let n = order of α.
Let f = characteristic polynomial of α∗

= x2g + · · ·+ 1 ∈ Z[x ]

Questions
What does the value of n tell us about f ?
In particular, does n determine f ?
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Partial answers.

The order does tell us some things.
Every root ζ of f satisfies ζn = 1.
n is the smallest integer for which this holds.
At most 2 + (2g − 2)/n of the ζ are equal to 1.

Consider the degree-n map C −→ D := C/〈α〉.
We have Jac D ∼ (Jac C)α=1.
Thus the genus of D is half the number of ζ equal to 1.
Apply Riemann-Hurwitz.

But the order does not tell us everything.
Suppose α is an involution of a genus-3 curve C.
Three polynomials x6 + · · ·+ 1 meet the conditions above.
All three occur, for some choice of C and α.
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Hyperelliptic curves.

Suppose C is hyperelliptic, with hyperelliptic involution ι.

Then α induces an automorphism α of C/〈ι〉 ∼= P1.

Let n be the order of α. Note that n = n or n = n/2.

Question
Do the values of n and n determine f ?
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Another partial answer.

In general, n and n do not determine f .
Suppose C is genus-3 hyperelliptic curve.

Suppose α 6= ι is an involution, so n = n = 2.

Then f can be either (x − 1)2(x + 1)4 or (x − 1)4(x + 1)2.

Both possibilities occur.
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A case where n and n do determine f .

Define ε by the conditions

ε ≡ −2g mod n and 0 ≤ ε < n.

Theorem
Suppose g is even or n is odd. Then

f =



(xn + 1)(2g+ε)/n

(x + 1)ε
if n = 2n;

(xn − 1)(2g+ε)/n

(x − 1)ε
if n = n and n is odd ;

(xn − 1)(2g+2)/n

(x2 − 1)
if n = n and n is even.

Guralnick and Howe Characteristic polynomials of automorphisms 6



Restrictions on g and n.

We defined ε so that

ε ≡ −2g mod n and 0 ≤ ε < n.

We can say more about ε, and hence about g and n.

Theorem
We have ε ∈ {0, 1, 2}.
Suppose g and n are even and n = n.
Then n ≡ 2 mod 4, and if n > 2 then ε = 2.
Suppose g and n are even and n = 2n. Then ε = 0.
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Idea of the proof of the first theorem.

Let ζ1, . . . , ζ2g be the roots of f . For each divisor d of n, define

Md = (number of ζ that satisfy ζd = 1)

To determine f , it is enough to determine the Md for all d .

Key idea: Md is twice the genus of the quotient of C by 〈αd〉.
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Quotients of hyperelliptic curves.

Let β = αd , and let D = C/〈β〉. Goal: Compute genus h of D.

If ι ∈ 〈β〉 then D has genus 0.

Otherwise, let β be the induced automorphism on C/〈ι〉 = P1.
Set m = order β = order β.

C

degree 2
��

〈β〉

degree m
// D

degree 2
��

P1
〈β〉

degree m
// P1.

We understand the bottom map: In appropriate coördinates, it’s
x 7→ xm or x 7→ xp − x .
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How are g and h related to one another?

C

��

〈β〉 // D

��
P1

〈β〉 // P1

Let e =

(
# points of P1 ramified in both
the right and the bottom map

)

Proposition
We have e ∈ {0, 1, 2}, and if char k 6= 2 then

m odd m even

e = 0 h = ( g + 1)/m − 1 h = ( g + 1)/m − 1
e = 1 2h = (2g + 1)/m − 1 2h = (2g + 2)/m − 1
e = 2 h = g/m h = ( g + 1)/m

Notice: If m and e are both even then g must be odd.
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So if g is even:

m odd m even

e = 0 2h = (2g + 2)/m − 2 (not possible)
e = 1 2h = (2g + 1)/m − 1 2h = (2g + 2)/m − 1
e = 2 2h = 2g/m (not possible)

Corollary
If g is even or m is odd, then e is determined by g and m:

If m is even then e = 1.
If m is odd then 0 ≤ e < m and e ≡ 2g + 2 mod m.

Likewise, h is determined by g and m.

Note: Corollary is true in all characteristics.
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The structure of the complete argument.

To recapitulate:

1 α is an automorphism of genus-g curve C.
2 By assumption, either g is even or the order of α is odd.
3 Characteristic polynomial f of α∗ is determined by the

values of Md for the divisors d of n.
4 Here Md is number of roots ζ of f with ζd = 1.
5 Md is twice the genus of quotient of C by αd .
6 By (2), either g is even or the order of αd is odd.
7 In this case, we have a formula for the genus of the

quotient.

Guralnick and Howe Characteristic polynomials of automorphisms 12



Completing the argument.

All that is left:

Show that the values of Md we calculate agree with the values
predicted by the f ’s in the theorem.

This is an easy exercise.
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Example: Genus-2 curves.

(n, n) characteristic polynomial

(1, 1) (x − 1)4

(2, 1) (x + 1)4

(2, 2) (x − 1)2(x + 1)2

(3, 3) (x2 + x + 1)2

(4, 2) (x2 + 1)2

(5, 5) x4 + x3 + x2 + x + 1
(6, 3) (x2 − x + 1)2

(6, 6) (x2 − x + 1)(x2 + x + 1)

(8, 4) x4 + 1
(10, 5) x4 − x3 + x2 − x + 1

Characteristic polynomials for automorphisms of genus-2
curves. Igusa: The list is complete in characteristic 6= 2, 3.
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The end.

Fin
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