CORRIGENDUM TO:
IMPROVED UPPER BOUNDS FOR THE NUMBER OF POINTS
ON CURVES OVER FINITE FIELDS

EVERETT W. HOWE AND KRISTIN E. LAUTER

ABSTRACT. We correct an error in Section 7 of our paper “Improved upper
bounds for the number of points on curves over finite fields.” The error involves
a standard form for triple covers of elliptic curves in characteristic 3, and it
invalidates the arguments we used to show that two particular polynomials do
not occur as Weil polynomials of curves over a finite field. We sketch two new
arguments that prove that these Weil polynomials do not occur.

1. INTRODUCTION

In Section 7.2 of our paper [3] there is a mistake in an argument about a standard
form for triple covers of elliptic curves in characteristic 3. In this corrigendum we
identify the error and make a corrected statement about the standard form for such
triple covers. The goal of [3, §7] was to show that two particular polynomials do not
occur as Weil polynomials of curves over a finite field. The error we made invalidates
our arguments that these polynomials do not occur. In Sections 3 and 4 we sketch
new arguments that show that these polynomials are not the Weil polynomials of
curves. In a forthcoming paper we will give the full details of the new techniques,
and use them to further improve some of the upper bounds in the van der Geer-van
der Vlugt tables of curves with many points [1].

2. THE ERROR, AND A CORRECTED STATEMENT.

We use the notation and conventions of [3] without further explanation.

Recall that the goal of [3, §7.1] was to find a standard form for triple covers of
elliptic curves over finite fields of characteristic 3. In that section, we showed that
every such triple cover of an elliptic curve E can be written in the form 23 — fz = g,
where f and g are functions on E satisfying certain conditions. Specifically, let
us say a pair (f,g) is well-conditioned at a point P of E if one of the following
conditions holds: either

(1) the order ordp g of g at P is not a multiple of 3, or
(2) we have 2ordp g > 3ordp f.

We showed in [3, §7.1] that every triple cover of E has a model 23 — fz = g such
that f has no poles outside co and no multiple zeros anywhere, and such that (f, g)
is well-conditioned at every finite pole of g. The model could be made to satisfy
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the further requirement that (f, g) be well-conditioned at oo, unless f is constant
and ¢ has a triple pole at oco.

The error in [3] occurs in §7.2, starting at the second full paragraph on page 1717.
The problem lies in the statement that for all P we have either 2ordp g > 3ordp f
or ordp g #Z 0 mod 3, except when P = oo and ordpg = —3. In particular, the
erroneous statement claims that the model can be chosen so that (f,g) is well-
conditioned at all finite P, not just at the poles of g. The erroneous statement is
in fact true for those finite points P for which ordp f = 0, because for these points
either P is a pole of g or we have 2ordp g > 0 = 3ordp f. However, the statement
can fail to hold for points P for which ordp f = 1.

What is true is that for every P # oo for which ordp f > 0, there is a constant
cp € k such (f, g+ cb — cpf) is well-conditioned at P. Note that over k the triple
cover 23 — fz = g+ ¢} — cpf is isomorphic to the triple cover 2% — fz = g. To take
account of this change, the final paragraph of [3, §7.2] should be replaced with the
following:

If ordp f is odd, let cp be an element of k such that either 2 ordp(g+
¢t —cpf) > 3ordp f or ordp(g + ¢b — cpf) # Omod 3. Let
gp =g+ c% — cpf. Then the contribution to the different at P is

1 if 3ordp f —2o0rdp gp < 0;
24+ 3ordp f —2ordpgp if 3ordp f —2o0rdp gp > 0.

In particular, when ordp f is odd the contribution at P to the
different is odd.

The contribution to the different at P thus depends on f and g in a more
complicated manner than we had thought, and several of the cases we consider in
§7.3 and §7.4 of [3] cannot be eliminated as easily as we argued in those sections.

3. A CORRECTED ARGUMENT FOR THE CASE ¢ =3, g =6, N = 15.

Suppose that C' is a genus-6 curve over Fg with exactly 15 rational points. In [3,
§4.7] we showed that the real Weil polynomial of the Jacobian J of C must be

h=(x+2)*x+3)(z +42% + 2 - 3).

Let F' be the unique elliptic curve over F3 with real Weil polynomial x + 2, and let
B be the abelian surface F' x F. Note that B is the only abelian surface over F3
with real Weil polynomial (z +2)2. We can show that there is an injection B — J
such that the canonical polarization on J pulls back to a polarization y on B whose
degree is 9. By looking at the degree-9 polarizations of B, we see that there will be
an injection F' — B such that the pullback of u to F' is a polarization A\ of degree
1 or 4. Now consider the composition

F— B<J

The canonical polarization on J pulls back via this composition to the polarization
A of F| and it follows that there is a map from C to F' of degree 1 or 2. Certainly
there is no such map of degree 1. But there are no such maps of degree 2 either,
because F' has 6 rational points and C' is supposed to have 15. Therefore there is
no genus 6 curve over F3 with real Weil polynomial equal to h.
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4. A CORRECTED ARGUMENT FOR THE CASE ¢ = 27, g =4, N = 65.

The appendix to [4] shows that a genus-4 curve over Fo7 with 65 rational points
must have real Weil polynomial (x + 7)(z + 10)3. Suppose C is such a curve, and
let J be its Jacobian. Let F' be the unique elliptic curve over Fo; with real Weil
polynomial = + 10. Note that F? is the unique abelian threefold over Fy; with real
Weil polynomial (z+10)3. We see from [3, Lemma 7] that there is a degree-9 isogeny
E x F3 — J, and that the pullback to F of the canonical principal polarization on
J is a degree-9 polarization on F2. Using the knowledge of the isomorphism classes
of principal polarizations of F3 that we obtain from Hoffmann’s classification [2]
of the rank-3 unimodular lattices over Z[v/—2], together with an easy argument
that shows that every degree-9 polarization of F? is the pullback of a principal
polarization on F? via a 3-isogeny, we can write down representatives for all of the
isomorphism classes of degree-9 polarizations on F3. For each representative y, we
check that there is an embedding F' — F such that the pullback of i to F is a
polarization of degree 1 or 4. It follows that there must be a map from C' to F' of
degree 1 or 2. A degree-1 map would be impossible, so there must be a degree-2
map. But it is not hard to adapt the method explained in [3, §6.1] to enumerate
the genus-4 double covers of F, and to verify that none of them has 65 points.
Therefore there is no genus-4 curve over Fo7 having 65 points.
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